

ADQ-SCU Handbuch

Rev. 1.01 DE

ALLDAQ Signalkonditionierungseinheit bestehend aus Baseboard, Powerboard und Relaisboard

Impressum

Handbuch ADQ-SCU Rev. 1.01 DE

Datum: 20.04.2018

Hersteller und Support

ALLNET® und ALLDAQ® sind eingetragene Warenzeichen der ALLNET® GmbH Computersysteme. Bei Fragen, Problemen und für Produktinformationen wenden Sie sich bitte direkt an den Hersteller:

ALLNET® GmbH Computersysteme

Division ALLDAQ Maistrasse 2 D-82110 Germering

Support

E-Mail: support@alldaq.com
Phone: +49 (0)89 894 222 – 474
Fax: +49 (0)89 894 222 – 33
Internet: www.alldaq.com/support

© Copyright 2018 ALLNET GmbH Computersysteme. Alle Rechte vorbehalten.

Alle in diesem Handbuch enthaltenen Informationen wurden mit größter Sorgfalt und nach bestem Wissen zusammengestellt. Dennoch sind Fehler nicht ganz auszuschließen. Spezifikationen und Inhalte dieses Handbuchs können ohne Vorankündigung geändert werden.

Für die Mitteilung eventueller Fehler sind wir jederzeit dankbar.

Erwähnte Warenzeichen sind eingetragene Warenzeichen der jeweiligen Firmen.

Inhaltsverzeichnis

Einführ	ung	7
1.1 Lie		
1.2 Sic	herheitshinweise	7
1.3 Au	fstellungs- und Montageort	8
1.4 Kui	rzbeschreibung	9
Das Sys	tem im Überblick	10
2.1 Blo	ckschaltbild	10
2.2 Bas	seboard ADQ-SCU-BB	11
2.3 Pov	werboard ADQ-SCU-PB	12
2.4 Rel	aisboard ADQ-SCU-RB	13
2.5 Mu	ltifunktionskarte ADQ-344	14
2.6 Bei	spiel-Systemkonfiguration	15
Anschlu	ıssbelegungen	16
3.1 Pos	sition der Steckverbinder	16
3.2 Prä	fixe der Steckerbezeichnungen	17
3.3 Ste	ckverbindertypen im Überblick	17
3.3.1	Typ Molex	17
3.3.2	Typ Stiftstecker	17
3.3.3	Typ Phoenix MCV	18
3.3.4	Gegenstecker für Micro-Fit-Steckverbinder	18
3.4 Bas	seboard (ADQ-SCU-BB)	19
3.4.1	Analogeingangsteil (STB14)	19
3.4.2	Analogausgangsteil (STB5)	20
3.4.3	Digital-I/O-Teil (STB67)	21
3.4.4	Externe Triggereingänge für AI/AO-Teil (STB8)	21
3.4.5	Zähler, Zündsignal & Temperaturalarm (STB9)	22
3.4.6	Spezialfunktionen (STB10)	23
3.4.7	Schaltbare Hilfsspannungen (STB1114 > STB15)	23
3.4.8	Versorgung für Baseboard (STB1617)	25
3.4.9	HDMI-Steckverbinder für Spezialfunktionen (STB18)	25
3.4.10	Audio-Ausgang (STB19)	27
3.4.11	Mess-Signal-Abgriff (STB2021)	27
3.4.12	68-pol. VHDCI-Buchsen von/zu ADQ-34x (STB_VA/B)	28
	1.1 Lie 1.2 Sic 1.3 Au 1.4 Kui 1.5 Bas 2.1 Blo 2.2 Bas 2.3 Pov 2.4 Rel 2.5 Mu 2.6 Bei 3.1 Pos 3.2 Prä 3.3 Ste 3.3.1 3.3.2 3.3.3 3.3.4 3.4 Bas 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 3.4.8 3.4.9 3.4.10 3.4.11	3.3.2 Typ Stiftstecker 3.3.3 Typ Phoenix MCV 3.3.4 Gegenstecker für Micro-Fit-Steckverbinder 3.4 Baseboard (ADQ-SCU-BB) 3.4.1 Analogeingangsteil (STB14) 3.4.2 Analogausgangsteil (STB5) 3.4.3 Digital-I/O-Teil (STB67) 3.4.4 Externe Triggereingänge für AI/AO-Teil (STB8) 3.4.5 Zähler, Zündsignal & Temperaturalarm (STB9) 3.4.6 Spezialfunktionen (STB10) 3.4.7 Schaltbare Hilfsspannungen (STB1114 > STB15) 3.4.8 Versorgung für Baseboard (STB1617)

	3.5 Pov	verboard (ADQ-SCU-PB)	_ 29
	3.5.1	Stiftsteckerleiste JB1 -> J1	_ 29
	3.5.2	Hochstrom-Versorgung schaltbar (ST18)	_ 30
	3.5.3	Sense-Anschluss (ST9)	_ 30
	3.5.4	Versorgung schaltbar (ST10, ST11)	_ 31
	3.5.5	Sense-Anschluss (ST12)	_ 31
	3.6 Rela	aisboard (ADQ-SCU-RB)	_ 32
	3.6.1	Stiftsteckerleiste JB2 -> JR2	_ 32
	3.6.2	Wechsler-Relais (STR14)	_ 33
	3.6.3	TTL-Digital-Ein-/Ausgänge (STR57)	_ 34
	3.6.4	STR8 (nicht bestückt)	_ 34
	3.7 Kun	denspezifische Aufsteckplatinen (CB13)	_ 35
4.	I ² C-Adre	essen	_ 37
		essen im Überblick	
	4.2 Gre	nzfrequenz und Verstärkung des LTC1564	_ 38
	4.3 Bas	eboard ADQ-SCU-BB	_ 39
	4.3.1	Al-Teil (Al_015) AC/DC-Kopplung, Dämpfung, Relais Abhörstufe	_ 39
	4.3.2	AI-Teil (AI_1631) AC/DC-Kopplung, Dämpfung, Kopfhörer-Ausgang	_ 41
	4.3.3	AO-Teil s.e./diff-Umschaltung, Stummschaltung, schaltbare Versorgungen	_ 43
	4.3.4	AO-Teil Analogausgang am LTC6090-5 deaktivieren	_ 45
	4.3.5	Abhörstufe mit Kopfhörer-Verstärker	_ 47
	4.3.6	Al-Modul 0, 8-Kanal Analog-Multiplexer	_ 47
	4.3.7	AI-Modul 0 (AI_04), digitale Filterstufe	_ 48
	4.3.8	Al-Modul 0 (Al_57), digitale Filterstufe, Abhörstufe Filter	_ 50
	4.3.9	Al-Modul 1 (Al_812), digitale Filterstufe	_ 52
		Al-Modul 1 (Al_1315), digitale Filterstufe, 8-Kanal Multiplexer	
		Al-Modul 2 (Al_1620), digitale Filterstufe	
		Al-Modul 2 (Al_2123), digitale Filterstufe, 8-Kanal Multiplexer	
		Al-Modul 3 (Al_2428), digitale Filterstufe	
		Al-Modul 3 (Al_2931), digitale Filterstufe, 8-Kanal Multiplexer	
	4.3.15	4-Kanal I ² C-Master/Slave-Switch	_ 64
		${\sf I}^2{\sf C} ext{-Temperatur}$ überwachung mit Schwellwerteinstellung und Alarmausgang ${\sf I}$	
		I ² C-EEPROM für anwenderspezifische Daten	
		verboard (ADQ-SCU-PB)	_
		Relais-Ansteuerung (U16), 2 x Hochstrom-Relais, 4 x Standard-Relais	
	4.4.2	4-Kanal-Leistungsmessung (U36)	66

4.5 Relaisboard (A	ADQ-SCU-RB)	67
4.5.1 Relais-Au	fsteckboard mit 16 Wechsler-Relais (SPDT), 24 TTL-I/C)s 67
5. Spezifikationen_		69
6. Anhang		79
6.1.1 Kabel		79
6.2 Hersteller und	Support	79
6.3 Wichtige Hinv	veise	80
6.3.1 Verpacku	ngsverordnung	80
6.3.2 Recycling	-Hinweis und RoHS-Konformität	80
6.3.3 Garantie		80

1. Einführung

Bitte prüfen Sie die Verpackung und den Inhalt vor Inbetriebnahme auf Schäden und Vollständigkeit. Sollten irgendwelche Mängel auftreten, bitten wir Sie, uns sofort in Kenntnis zu setzen.

- Deutet an der Verpackung etwas darauf hin, dass beim Transport etwas beschädigt wurde?
- Sind am Gerät Gebrauchsspuren zu erkennen?

Sie dürfen das Gerät auf keinen Fall in Betrieb nehmen, wenn es beschädigt ist. Wenden Sie sich im Zweifelsfall an unseren technischen Kundendienst.

Bitte lesen Sie – vor Installation und Programmierung des Gerätes – dieses Handbuch aufmerksam durch!

1.1 Lieferumfang

- ALLDAQ Baseboard ADQ-SCU-BB für Signalkonditionierungs-Einheit
- Aufsteckplatine ALLDAQ Powerboard ADQ-SCU-PB
- Aufsteckplatine ALLDAQ Relaisboard ADQ-SCU-RB

Optional:

- 2 x 68-pol. VHDCI-Kabel (Stecker-Stecker), doppelt geschirmt, Leitungen paarweise verdrillt, Länge: 1,2 m (ADQ-CR-VHDCI-68M/68M-1,2m), Art.-Nr.: 150597 (2 x)
- 2 x 68-pol. VHDCI-Kabel (Stecker-Stecker), doppelt geschirmt, Leitungen paarweise verdrillt, Länge: 1,8 m (ADQ-CR-VHDCI-68M/68M-1,8m), Art.-Nr.: 146813 (2 x)
- HDMI-Kabel, Länge: 1 m (ADQ-CR-HDMI-MM-1m), Art.-Nr.: 127015

1.2 Sicherheitshinweise

Beachten Sie unbedingt folgende Hinweise:

- Vermeiden Sie die Berührung von Kabeln und Steckverbindern
- Setzen Sie das Gerät im Betrieb niemals direkter Sonneneinstrahlung aus.
- Betreiben Sie das Gerät niemals in der Nähe von Wärmequellen.
- Schützen Sie das Gerät vor Nässe, Staub, Flüssigkeiten und Dämpfen.
- Verwenden Sie das Gerät nicht in Feuchträumen und keinesfalls in explosionsgefährdeten Bereichen.
- Eine Reparatur darf nur durch geschultes, autorisiertes Personal durchgeführt werden.

Bitte beachten Sie bei Inbetriebnahme des Gerätes insbesondere bei Betrieb mit Spannungen größer 42 V die Installationsvorschriften und alle einschlägigen Normen (inkl. VDE-Standards).

Einführung 7

- Wir empfehlen, ungenutzte Eingänge grundsätzlich mit der korrespondierenden Bezugsmasse zu verbinden, um ein Übersprechen zwischen den Eingangskanälen zu vermeiden.
- Trennen Sie grundsätzlich die Feldverdrahtung der analogen und digitalen Ein-/Ausgänge von der Signalkonditionierungseinheit (ADQ-SCU inkl. Aufsteckplatinen) sowie die Verbindung zur ADQ-344 bevor Sie die Spannungsversorgung der Signalkonditionierungseinheit herstellen bzw. lösen.

- Stellen Sie sicher, dass beim Handling der Karte keine statische Entladung über das Gerät stattfinden kann. Befolgen Sie die Standard-ESD-Schutzmaßnahmen.
- Verbinden Sie die Geräte niemals mit spannungsführenden Teilen, insbesondere nicht mit Netzspannung.
- Vorsichtsmaßnahmen zur Vermeidung einer unvorhersehbaren Fehlanwendung sind vom Anwender zu treffen.

Bei nicht bestimmungsgemäßem Gebrauch und daraus folgenden Schäden, ist eine Haftung durch die ALLNET® GmbH Computersysteme ausgeschlossen.

1.3 Aufstellungs- und Montageort

Die Signalkonditionierungseinheit (ADQ-SCU inkl. Aufsteckplatinen) ist zum Einbau in Messund Testsysteme durch qualifiziertes Fachpersonal bestimmt. Dabei sind einschlägige Installationsvorschriften und Normen zu beachten.

Die ADQ-SCU darf nur in trockenen Räumen verwendet werden. Sorgen Sie für eine ausreichende Wärmeabfuhr. Achten Sie auf sicheren Sitz der Anschlusskabel. Der Einbau hat so zu erfolgen, dass die Kabel nicht unter Zug sind, da diese sich sonst lösen können.

8 Einführung

1.4 Kurzbeschreibung

Die Signalkonditionierungseinheit ALLDAQ ADQ-SCU wurde entwickelt, um eine Vielzahl analoger und digitaler Ein-/Ausgänge an die Anforderungen eines komplexen, automatisierten Messund Testsystems optimal anzupassen. Die Erfassung und Generierung der Signale erfolgt synchron über die multifunktionale Mess- und Steuerkarte ALLDAQ ADQ-344, welche gleichzeitig die Ansteuerung der ADQ-SCU via I²C-Bus übernimmt.

Wichtige Features:

- Analyse von Audiosignalen unterschiedlichster Pegel
- Eingangskopplung (AC/DC), digitale Filter, Verstärkung und Dämpfung einstellbar
- Messung und mathematische Auswertung relevanter Kennwerte
- Monitoring-Stufe zum Abhören aller Audiokanäle
- Generierung von Audiosignalen zur Stimulierung von Endstufen
- Versorgungsspannungen via Relais schalten
- Ströme bis 100 A (12 VDC) per Relais schalten
- Kundenspezifische Erweiterungen über Aufsteckmodule
- Einfache Steuerung über I²C-Bus
- API zur einfachen Einbindung in Ihre Applikation
- Optimiert für den Betrieb mit der isolierten Mess- und Steuerkarte ADQ-344

Einführung 9

2. Das System im Überblick

2.1 Blockschaltbild

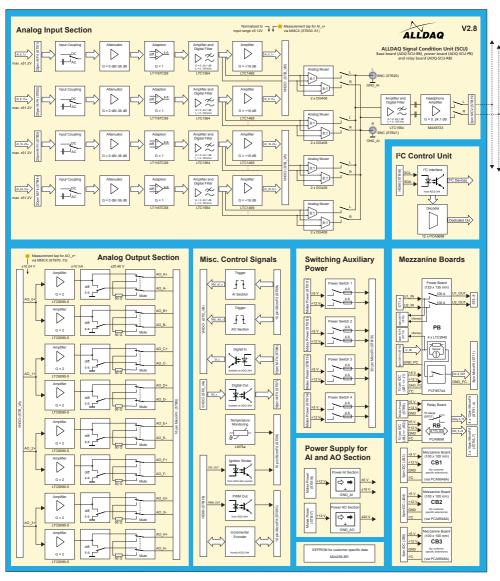


Abb. 1: Blockschaltbild ADQ-SCU

2.2 Baseboard ADQ-SCU-BB

Baseboard für Signal Condition Unit (SCU) zum Anschluss an ADQ-344.

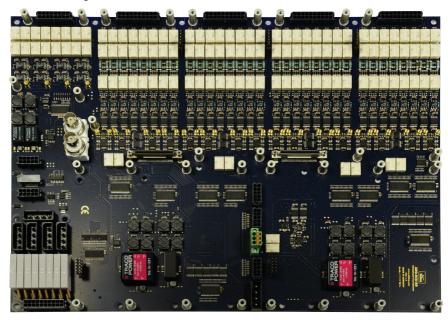


Abb. 2: Baseboard ADQ-SCU-BB

A/D-Teil

- 32 diff. Analogeingänge, Eingangsbereiche je Kanal programmierbar (max. ±51,2 V)
- AC/DC-Kopplung je Kanal programmierbar
- -36 dB Dämpfungsstufe je Kanal zuschaltbar
- Digitale Filterstufe je Kanal programmierbar (Grenzfrequenz einstellbar von 0 bis 150 kHz in Schritten von 10 kHz)
- Verstärkung je Kanal programmierbar (Faktor: 1..16, dies entspricht: 0..24,1 dB)
- Monitoring-Stufe: Stereo-Kopfhörer-Verstärker zum direkten Anschluss eines Kopfhörers
- 4 digitale Triggereingänge

D/A-Teil

- 4/8 Analogausgänge, Ausgangsbereich ±20,48 V / max. 10 mA
- Umschaltung je Kanal zwischen Bezug gegen Masse und Gleichtakt-Ausgabe
- Stummschaltung (Mute)
- 4 digitale Triggereingänge

Sonstige Features

- Temperaturüberwachung des Baseboards mit Schwellwerteinstellung und optoentkoppeltem Alarmausgang
- 3 Steckplätze für kundenspezifische Aufsteckmodule
- PWM-Ausgang (optoentkoppelt)
- Eingang für Zündungssignal "Klemme 15" (optoentkoppelt)
- 8 isolierte Digitaleingänge
- 8 isolierte Digitalausgänge
- Gesamte Steuerung via I²C-Bus
- Versorgungen via Relais schaltbar (4 x +5 V/4 A; 4 x +12 V/4 A)
- Versorgung via PC-Netzteil (+5 V, +12 V)

2.3 Powerboard ADQ-SCU-PB

Powerboard für Signal Condition Unit (SCU) zum Aufstecken auf ADQ-SCU-BB.

Hinweis: Karten der Erstserie (Rev. 1.0) sind mit ADQ-GEN3-PWR beschriftet.

Abb. 3: Powerboard ADQ-SCU-PB

- Power-Aufsteckboard (I²C-gesteuert)
- 2 x Hochstrom-Relais bis max. 12 VDC/100 A je Relais (Senseleitung am Relaiseingang)
- 4 x Versorgung (U3..6) schaltbar via Relais max. 30 VDC/5 A je Relais (Senseleitung am Relaiseingang)
- 4-Kanal Leistungsmessung für U3..6

2.4 Relaisboard ADQ-SCU-RB

Relaisboard für Signal Condition Unit (SCU) zum Aufstecken auf ADQ-SCU-BB.

Hinweis: Karten der Erstserie (Rev. 1.0) sind mit ADQ-GEN3-REL beschriftet.

Abb. 4: Relaisboard ADQ-SCU-RB

- Relais-Aufsteckboard (I²C-gesteuert)
- 16 Wechsler-Relais (SPDT, Typ C), max. 30 VDC/6 A
- 24 TTL-I/Os (max. 10 mA Source, 25 mA Sink)

2.5 Multifunktionskarte ADQ-344

Die ADQ-SCU wurde zum Anschluss an die multifunktionale Mess- und Steuerkarte ALLDAQ ADQ-344 entwickelt, welche gleichzeitig die Ansteuerung der ADQ-SCU via I²C-Bus übernimmt. Die Verbindung erfolgt über zwei 68-pol. VHDCI-Kabel und ein HDMI-Kabel für diverse Spezial-Funktionen wie dem I²C-Bus zur Steuerung der ADQ-SCU.

Seitens der ADQ-344 steht folgende Grundfunktionalität zur Verfügung:

- 32 pseudodifferentielle 18 bit Spannungseingänge bis 800 kS/s
- Eingangsbereiche: ±10,24 V, ±5,12 V, 0-10,24 V, 0-5,12 V
- Isolationsspannung A/D-Teil: 1500 VDC (60 s)
- Vier 16 bit Spannungsausgänge (±10,24 V) bis 500 kS/s
- Isolationsspannung D/A-Teil: 1500 VDC (60 s)
- 16 TTL-DIOs (3,3 V/5 V), max. 20 mA je Ausgang
- 8 isolierte Digital-Eingänge (High: 15..35 V)
- 8 isolierte Digital-Ausgänge bis 600 mA/Ausgang
- Isolationsspannung DI- und DO-Teil: 500 VAC
- Spezial-Funktionen via HDMI-Steckverbinder: 32 bit Z\u00e4hler, I\u00e2C-Bus-Port, Inkremental-Encoder-Port, Frequenzmessung, PWM-Ausgabe

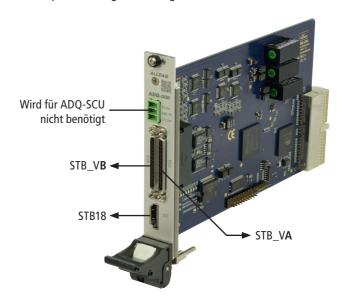


Abb. 5: Multifunktionskarte ADQ-344

2.6 Beispiel-Systemkonfiguration

Typische Konfiguration aus einem ADQ-Express Messsystem, bestückt mit 2 Multifunktionskarten vom Typ ADQ-344 zur Ansteuerung von jeweils einer Signalkonditionierungseinheit ADQ-SCU. Außerdem wird je Prüfling ein Strommesskanal der ADQ-412 mit einem Powerboard ADQ-SCU-PB verbunden.

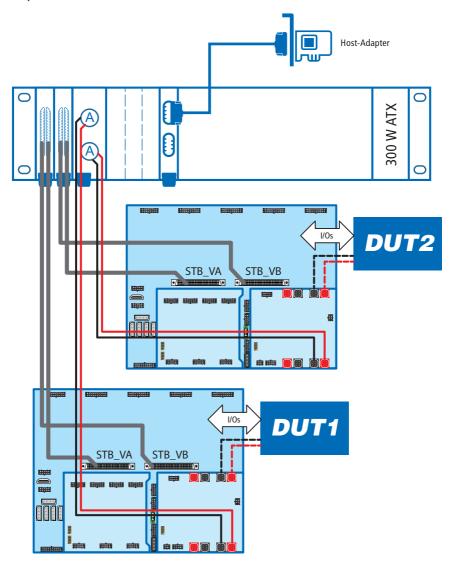


Abb. 6: Beispiel-Systemkonfiguration

3. Anschlussbelegungen

3.1 Position der Steckverbinder

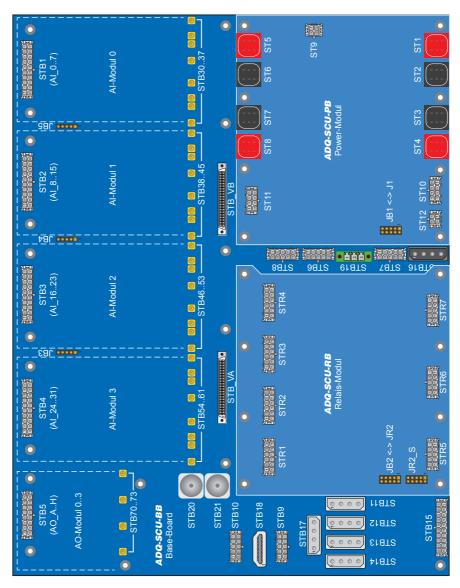


Abb. 7: Steckerpositionierung

3.2 Präfixe der Steckerbezeichnungen

STB: Steckverbinder auf dem Baseboard (ADQ-SCU-BB)

ST: Steckverbinder auf dem Powerboard (ADQ-SCU-PB)

STR: Steckverbinder auf dem Relaisboard (ADQ-SCU-RB)

Jx: Stiftstecker für Verbindung vom Baseboard zu den Aufsteckplatinen

3.3 Steckverbindertypen im Überblick

3.3.1 Typ Molex

Es kommen zahlreiche Steckverbinder der Molex 8981-Serie sowie zweireihige Micro-Fit Steckverbinder der Molex 43045-Serie mit 0,762 µm Goldauflage in verschiedenen Polzahlen zum Einsatz.

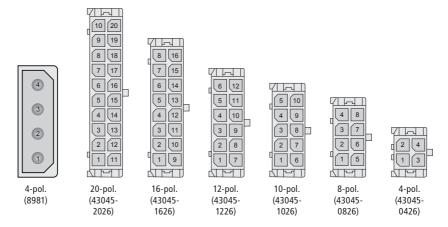


Abb. 8: Molex-Steckverbinder (Draufsicht)

3.3.2 Typ Stiftstecker

Zur Verbindung zwischen Baseboard und Aufsteckmodulen kommen 10- und 5-polige Stiftsteckerleisten zum Einsatz (Rastermaß: 2,54 mm).

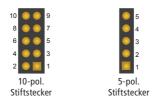


Abb. 9: Stiftstecker (Draufsicht)

3.3.3 Typ Phoenix MCV

Abb. 10: 3-pol. Kopfhörer-Anschluss (Draufsicht)

Steckertyp: 3-pol. Grundleiste, Phoenix MCV 1,5/ 3-GF-3,5; Best.-Nr.: 1843237

Geeigneter Gegenstecker mit Federklemmen: Phoenix FMC 1,5/ 3-STF-3,5; Best.-Nr.: 1966101

3.3.4 Gegenstecker für Micro-Fit-Steckverbinder

Wir empfehlen die Gegenstecker-Gehäuse der Serie 43025-xy10 mit UL 94V-2 Zulassung.

Polzahl	Steckertyp auf ADQ-SCU	Gegenstecker- Gehäuse	Stückzahl BB/PB/RB	Stückzahl gesamt
4-polig	43045-0426	43025-0410	0/2/0	2
8-polig	43045-0826	43025-0810	0/2/0	2
10-polig	43045-1026	43025-1010	5/0/3	8
12-polig	43045-1226	43025-1210	0/0/4	4
16-polig	43045-1626	43025-1610	1/0/0	1
20-polig	43045-2026	43025-2010	5/0/0	5

Tabelle 1: Übersicht Gegenstecker

Für alle Gegenstecker in obiger Tabelle werden insgesamt 268 Crimp-Buchsen benötigt. Je nach Anforderung sind folgende Varianten möglich:

Wir empfehlen vergoldete Kontakte zu verwenden.

Strom je Kontakt	Kabel-Querschnitt	Material	Kontakt	Тур
0,36 A-0,14 A	0,13 - 0,05 mm ² (26-30 AWG)	Phosphor-Bronze	verzinnt	43030-0010
0,36 A-0,14 A	0,13 - 0,05 mm ² (26-30 AWG)	Phosphor-Bronze	vergoldet	43030-0011
1,5 A-0,6 A	0,52 - 0,21 mm ² (20-24 AWG)	Phosphor-Bronze	verzinnt	43030-0007
1,5 A-0,6 A	0,52 - 0,21 mm ² (20-24 AWG)	Phosphor-Bronze	vergoldet	43030-0008
2,3 A	0,75 mm ² (18 AWG)	Phosphor-Bronze	verzinnt	43030-0038

Tabelle 2: Übersicht Crimp-Buchsen

Achtung!

Bitte beachten Sie die Hinweise von Molex zum fachgerechten Crimpen der Micro-Fit-Stecker!

3.4 Baseboard (ADQ-SCU-BB)

3.4.1 Analogeingangsteil (STB1..4)

Figure 11: 20-polig Micro-Fit 43045-2026

Die korrespondierenden MMCX-Steckverbinder (STB30..61) sind in Klammern angegeben. Sie können als Messabgriff für die Analogeingangssignale zur ADQ-344 verwendet werden.

Pin	STB1 (Modul 0)	STB2 (Modul 1)	STB3 (Modul 2)	STB4 (Modul 3)
1	GND_AI	GND_AI	GND_AI	GND_AI
2	AI_0+ (STB30)	AI_8+ (STB38)	AI_16+ (STB46)	AI_24+ (STB54)
3	AI_1+ (STB31)	AI_9+ (STB39)	AI_17+ (STB47)	AI_25+ (STB55)
4	AI_2+ (STB32)	AI_10+ (STB40)	AI_18+ (STB48)	AI_26+ (STB56)
5	AI_3+ (STB33)	AI_11+ (STB41)	AI_19+ (STB49)	AI_27+ (STB57)
6	AI_4+ (STB34)	AI_12+ (STB42)	AI_20+ (STB50)	AI_28+ (STB58)
7	AI_5+ (STB35)	AI_13+ (STB43)	AI_21+ (STB51)	AI_29+ (STB59)
8	AI_6+ (STB36)	AI_14+ (STB44)	AI_22+ (STB52)	AI_30+ (STB60)
9	AI_7+ (STB37)	AI_15+ (STB45)	AI_23+ (STB53)	AI_31+ (STB61)
10	GND_AI	GND_AI	GND_AI	GND_AI
11	GND_AI	GND_AI	GND_AI	GND_AI
12	AI_0- (STB30)	AI_8- (STB38)	AI_16- (STB46)	AI_24- (STB54)
13	AI_1- (STB31)	AI_9- (STB39)	AI_17- (STB47)	AI_25- (STB55)
14	AI_2- (STB32)	AI_10- (STB40)	AI_18- (STB48)	AI_26- (STB56)
15	AI_3- (STB33)	AI_11- (STB41)	AI_19- (STB49)	AI_27- (STB57)
16	AI_4- (STB34)	AI_12- (STB42)	AI_20- (STB50)	AI_28- (STB58)
17	AI_5- (STB35)	AI_13- (STB43)	AI_21- (STB51)	AI_29- (STB59)
18	AI_6- (STB36)	AI_14- (STB44)	AI_22- (STB52)	AI_30- (STB60)
19	AI_7- (STB37)	AI_15- (STB45)	AI_23- (STB53)	AI_31- (STB61)
20	GND_AI	GND_AI	GND_AI	GND_AI

Table 3: Anschlussbelegung STB1..4

AI-Modul 0	AI_0 (STB30) AI_7 (STB37)
Al-Modul 1	AI_8 (STB38) AI_15 (STB45)
AI-Modul 2	AI_16 (STB46)AI_23 (STB53)
AI-Modul 3	AI_24 (STB54)AI_31 (STB61)

Figure 12: MMCX-Stecker STB30..61

3.4.2 Analogausgangsteil (STB5)

Abb. 13: 16-polig Micro-Fit 43045-1626

Pin	STB5	Bemerkung
1	A0_A+	Korrespondierendes Ausgangssignal von AO_0+
2	AO_B+	Korrespondierendes Ausgangssignal von AO_0+
3	A0_C+	Korrespondierendes Ausgangssignal von AO_1+
4	A0_D+	Korrespondierendes Ausgangssignal von AO_1+
5	AO_E+	Korrespondierendes Ausgangssignal von AO_2+
6	AO_F+	Korrespondierendes Ausgangssignal von AO_2+
7	AO_G+	Korrespondierendes Ausgangssignal von AO_3+
8	AO_H+	Korrespondierendes Ausgangssignal von AO_3+
9	A0_A-	Alternativ phasengleich zu AO_A+ oder Bezug zu GND_AO
10	AO_B-	Alternativ phasengleich zu AO_B+ oder Bezug zu GND_AO
11	A0_C-	Alternativ phasengleich zu AO_C+ oder Bezug zu GND_AO
12	A0_D-	Alternativ phasengleich zu AO_D+ oder Bezug zu GND_AO
13	A0_E-	Alternativ phasengleich zu AO_E+ oder Bezug zu GND_AO
14	AO_F-	Alternativ phasengleich zu AO_F+ oder Bezug zu GND_AO
15	AO_G-	Alternativ phasengleich zu AO_G+ oder Bezug zu GND_AO
16	A0_H-	Alternativ phasengleich zu AO_H+ oder Bezug zu GND_AO

Tabelle 4: Anschlussbelegung STB5

Korrespondierende MMCX-Koaxialsteckverbinder (STB70..73), die als Messabgriff für die Analogausgangssignale von der ADQ-344 verwendet werden können.

AO-Modul 0	AO_0+ von ADQ-344 (STB70)
AO-Modul 1	AO_1+ von ADQ-344 (STB71)
AO-Modul 2	AO_2+ von ADQ-344 (STB72)
AO-Modul 3	AO_3+ von ADQ-344 (STB73)

Abb. 14: MMCX-Stecker STB70..73

3.4.3 Digital-I/O-Teil (STB6..7)

Abb. 15: 10-polig Micro-Fit 43045-1026

Pin	STB6 (DI)	STB7 (DO)
1	GND_DI	DO_0
2	DI_0	DO_2
3	DI_2	DO_4
4	DI_4	DO_6
5	DI_6	V_EXT_DO
6	V_EXT_DI	DO_1
7	DI_1	DO_3
8	DI_3	DO_5
9	DI_5	DO_7
10	DI_7	GND_DO

Tabelle 5: Anschlussbelegung STB6..7

3.4.4 Externe Triggereingänge für AI/AO-Teil (STB8)

Abb. 16: 10-polig Micro-Fit 43045-1026

Pin	STB8	Bemerkung
1	TRIG_AO_0	Triggereingang für Analogausgang AO_0 der ADQ-344 (= AO_A/B)
2	TRIG_AO_2	Triggereingang für Analogausgang AO_2 der ADQ-344 (= AO_E/F)
3	TRIG_AO_GND	Bezugsmasse für Trigger der Analogausgänge
4	TRIG_AI_2	Triggereingang für Analogeingangsmodul 2 der ADQ-344 (= AI_1623)
5	TRIG_AI_0	Triggereingang für Analogeingangsmodul 0 der ADQ-344 (= AI_07)
6	TRIG_AO_1	Triggereingang für Analogausgang AO_1 der ADQ-344 (= AO_C/D)
7	TRIG_AO_3	Triggereingang für Analogausgang AO_3 der ADQ-344 (= AO_G/H)
8	TRIG_AI_GND	Bezugsmasse für Trigger der Analogeingänge
9	TRIG_AI_3	Triggereingang für Analogeingangsmodul 3 der ADQ-344 (= AI_2431)
10	TRIG_AI_1	Triggereingang für Analogeingangsmodul 1 der ADQ-344 (= AI_815)

Tabelle 6: Anschlussbelegung STB8

3.4.5 Zähler, Zündsignal & Temperaturalarm (STB9)

Abb. 17: 10-polig Micro-Fit 43045-1026

Pin	STB9	Bemerkung
1	TEMP_OUT	Open-Collector-Ausgang der Temperaturüberwachung auf dem Baseboard ($V_{CE} = 50 \text{V} \text{I}_{\text{max.}} = 250 \text{mA}$)
2	IGN_STROBE	Optoentkoppelter Eingang für Zündungssignal ("Klemme 15")
3	CNT_EXT_CLK	Externer Takteingang für Zähler
4	CNT_EN	Enable-Eingang für Zähler
5	CNT_TRIG	Externer Triggereingang für Zähler
6	VCC_PC	+5 V vom PC
7	GND_PC	PC-Masse
8	GND_PC	PC-Masse
9	GND_PC	PC-Masse
10	GND_PC	PC-Masse

Tabelle 7: Anschlussbelegung STB9

3.4.6 Spezialfunktionen (STB10)

An diesem Steckverbinder sind die Signale für Frequenzmessung, PWM-Ausgabe und Inkremental-Encoder zusammengefasst.

Abb. 18: 10-polig Micro-Fit 43045-1026

Pin	STB10	Bemerkung	
1	GND_PC	PC-Masse	
2	GND_PC	PC-Masse	
3	PWM_EN	Enable-Eingang für PWM-Ausgabe	
4	GND_PC	PC-Masse	
5	INC_A	Inkremental-Encoder-Eingang (Kanal A)	
6	FRQ_IN	Eingang für Frequenzmessung	
7	PWM_OUT	Optoentkoppelter Ausgang für Rechtecksignal mit variablem Tastgrad	
8	GND_PC	PC-Masse	
9	INC_B	Inkremental-Encoder-Eingang (Kanal B)	
10	INC_EXT_RST	Inkremental-Encoder Rücksetz-Eingang	

Tabelle 8: Anschlussbelegung STB10

3.4.7 Schaltbare Hilfsspannungen (STB11..14 > STB15)

Spannungszufuhr (Eingänge) vom PC-Netzteil über vier Molex-Steckverbinder (STB11..14). Die Spannungen +12 V (12V_IN_1..4) und +5 V (5V_IN_1..4) werden getrennt zugeführt und via Relais an STB15 ausgegeben.

Abb. 19: 4 x 4-polig Molex 8981-Serie (180°), (STB11..14)

Pin	STB11 (Switch 1)	STB12 (Switch 2)	STB13 (Switch 3)	STB14 (Switch 4)
1	12V_IN_1	12V_IN_2	12V_IN_3	12V_IN_4
2	GND_PC	GND_PC	GND_PC	GND_PC
3	GND_PC	GND_PC	GND_PC	GND_PC
4	5V_IN_1	5V_IN_2	5V_IN_3	5V_IN_4

Tabelle 9: Anschlussbelegung STB11..14

Ausgänge der über Relais schaltbaren Versorgungsleitungen (4 x +5 V/4A, 4 x +12 V/4A) an STB15. Jeder Ausgang ist mit einer 4A Sicherung vom Typ Polyfuse abgesichert.

Abb. 20: 1 x 20-polig Micro-Fit 43045-2026 (STB15)

Pin	STB15	Bemerkung	
1	GND_PC	PC-Masse	
2	GND_PC	PC-Masse	
3	GND_PC	PC-Masse	
4	GND_PC	PC-Masse	
5	GND_PC	PC-Masse	
6	GND_PC	PC-Masse	
7	GND_PC	PC-Masse	
8	GND_PC	PC-Masse	
9	GND_PC	PC-Masse	
10	GND_PC	PC-Masse	
11	12V_OUT_1	Ausgang der schaltbaren 12 V Versorgung (4 A)	
12	5V_0UT_1	Ausgang der schaltbaren 5 V Versorgung (4 A)	
13	12V_OUT_2	Ausgang der schaltbaren 12 V Versorgung (4 A)	
14	5V_OUT_2	Ausgang der schaltbaren 5 V Versorgung (4 A)	
15	GND_PC	PC-Masse	
16	GND_PC	PC-Masse	
17	12V_OUT_3	Ausgang der schaltbaren 12 V Versorgung (4A)	
18	5V_OUT_3	Ausgang der schaltbaren 5 V Versorgung (4 A)	
19	12V_OUT_4	Ausgang der schaltbaren 12 V Versorgung (4 A)	
20	5V_OUT_4	Ausgang der schaltbaren 5 V Versorgung (4 A)	

Tabelle 10: Anschlussbelegung STB15

3.4.8 Versorgung für Baseboard (STB16..17)

Spannungszufuhr vom PC-Netzteil über zwei Molex-Steckverbinder (STB16..17) für Spannungsversorgung von Baseboard, Powerboard und Relaisboard mit ±5 V, ±15 V und ±24 V.

Abb. 21: 2 x 4-polig Molex, 8981-Serie (180°), (STB16..17)

Pin	STB16	STB17	
1	12V_IN (+12 V PC)	12V_IN (+12 V PC)	
2	GND_PC	GND_PC	
3	GND_PC	GND_PC	
4	5V_IN (+5V PC)	5V_IN (+5V PC)	

Tabelle 11: Anschlussbelegung STB16..17

3.4.9 HDMI-Steckverbinder für Spezialfunktionen (STB18)

HDMI-Steckverbinder zur Verbindung folgender Spezialfunktionen der ADQ-344 (ST3) mit dem Baseboard:

- 32 bit Zähler (Präfix: CNT...)
- I²C-Bus-Port (Präfix: I2C...)
- Inkremental-Encoder-Port (Präfix: INC...)
- Frequenzmesseingang (Präfix: FRQ...)
- PWM-Ausgabe (Präfix: PWM...)

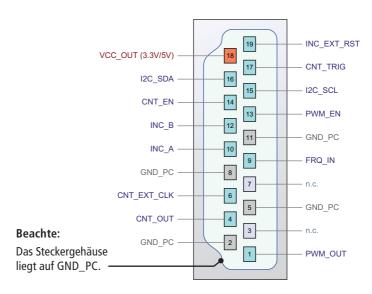


Abb. 22: HDMI-Steckverbinder (STB18)

Pin	STB18	Bemerkung	
1	PWM_OUT	Eingang für PWM-Ausgang der ADQ-344	
2	GND_PC	PC-Masse	
3	n.c.	reserviert	
4	CNT_OUT	Eingang für Strobe-Ausgang des Zählers der ADQ-344	
5	GND_PC	PC-Masse	
6	CNT_EXT_CLK	Ausgang zum externen Takteingang für Zähler der ADQ-344	
7	n.c.	reserviert	
8	GND_PC	PC-Masse	
9	FRQ_IN	Ausgang zum Frequenzmesseingang der ADQ-344	
10	INC_A	Ausgang zum Inkremental-Encoder-Eingang (Kanal A) der ADQ-344	
11	GND_PC	PC-Masse	
12	INC_B	Ausgang zum Inkremental-Encoder-Eingang (Kanal B) der ADQ-344	
13	PWM_EN	Ausgang zum Enable-Eingang für PWM-Ausgabe der ADQ-344	
14	CNT_EN	Ausgang zum Enable-Eingang für Zähler der ADQ-344	
15	I2C_SCL	Takt-Eingang für I ² C-Bus von der ADQ-344	
16	I2C_SDA	Daten-Eingang für I ² C-Bus von der ADQ-344	
17	CNT_TRIG	Ausgang zum externen Triggereingang für Zähler der ADQ-344	
18	VCC_IN_344	3,3 V/5 V Versorgungsspannung von ADQ-344	
19	INC_EXT_RST	Ausgang zum Inkremental-Encoder Rücksetz-Eingang der ADQ-344	

Tabelle 12: Anschlussbelegung STB18

3.4.10 Audio-Ausgang (STB19)

Stereo-Audio-Ausgang zum Anschluss eines Kopfhörers. Der Ausgang ist über Relais schaltbar, sodass die Audio-Ausgänge mehrerer Baseboards parallel verdrahtet werden können.

Achtung:

Im Falle einer Parallelschaltung von Audio-Ausgängen mehrerer Baseboards, müssen Sie sicherstellen, dass nie zwei oder mehrere Ausgänge gleichzeitig aktiv sind (Relais geschlossen). Ansonsten kann die Ausgangsstufe zerstört werden.

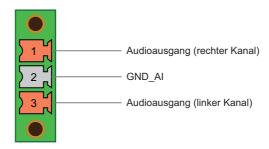


Abb. 23: Audio-Ausgang (STB19)

Steckertyp: 3-pol. Grundleiste, Phoenix MCV 1,5/ 3-GF-3,5; Best.-Nr.: 1843237

Geeigneter Gegenstecker mit Federklemmen: Phoenix FMC 1,5/ 3-STF-3,5; Best.-Nr.: 1966101

3.4.11 Mess-Signal-Abgriff (STB20..21)

Mess-Signal-Abgriff zwischen digitaler Filterstufe und Ausgangsverstärker. Durch entsprechende Ansteuerung der Analog-Multiplexer-Stufe und der nachgeschalteten Relais kann jeder der 32 A/D-Kanäle beliebig auf eine der beiden BNC-Buchsen geschaltet werden.

Beachte:

Schalten Sie immer nur einen A/D-Kanal auf eine bestimmte BNC-Buchse!

Abb. 24: 2 x BNC-Buchse (STB20..21)

3.4.12 68-pol. VHDCI-Buchsen von/zu ADQ-34x (STB_VA/B)

Die folgende Anschlussbelegung bezieht sich auf die VHDCI-Buchsen an der ADQ-344. D. h. die Richtung der Signale ist auf Baseboard-Seite jeweils invers zu betrachten.

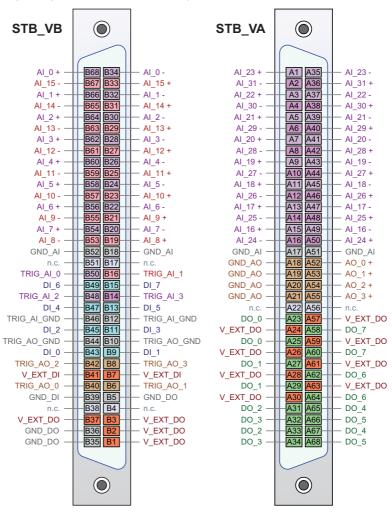


Abb. 25: Anschlussbelegung STB_VA und STB_VB

3.5 Powerboard (ADQ-SCU-PB)

3.5.1 Stiftsteckerleiste JB1 -> J1

Über die zweireihige Stiftsteckerleiste JB1 -> J1 wird das Powerboard mit dem Baseboard verbunden.

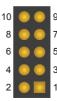


Abb. 26: 10-pol. Stiftsteckerleiste (JB1 / J1)

Pin	Bemerkung	Pin	Bemerkung
1	GND_PC	2	GND_PC
3	SCL_BASE	4	SDA_BASE
5	GND_PC	6	GND_PC
7	+12 V PC	8	+12 V PC
9	+5 V PC	10	+5 V PC

Tabelle 13: Anschlussbelegung JB1/J1

3.5.2 Hochstrom-Versorgung schaltbar (ST1..8)

Über ST1..8 können zwei Stromversorgungen bis max. 100 A/12 V je Kanal via Relais geschaltet werden. Der Schaltzustand wird über eine LED angezeigt.

Abb. 27: 8 x einpolige Hochstrom-Steckverbinder vom Typ: Würth Electronic REDCUBE Direct Plug Terminal WP-PLUG.

ST		Bemerkung
ST1	U1_IN	Eingang U1 _{IN}
ST2	GND_PC	PC-Masse
ST3	GND_PC	PC-Masse
ST4	U2_IN	Eingang U2 _{IN}
ST5	U1_OUT	Relais-Ausgang U1 _{OUT}
ST6	GND_PC	PC-Masse
ST7	GND_PC	PC-Masse
ST8	U2_OUT	Relais-Ausgang U2 _{OUT}

Tabelle 14: Anschlussbelegung ST1..8

3.5.3 Sense-Anschluss (ST9)

Sense-Anschluss um die Spannung an den Eingängen U1_{IN} und U2_{IN} zu überwachen.

Abb. 28: 4-polig Micro-Fit 43045-0426

Pin	ST9	Bemerkung	
1	GND_PC	PC-Masse	
2	GND_PC	PC-Masse	
3	U2_SENSE	Sense-Anschluss für U2 _{IN} (von ST4 kommend)	
4	U1_SENSE	Sense-Anschluss für U1 _{IN} (von ST1 kommend)	

Tabelle 15: Anschlussbelegung ST9

3.5.4 Versorgung schaltbar (ST10, ST11)

Über ST10 und ST11 können vier Stromversorgungen (max. 80 V/5 A je Kanal) via Relais geschaltet werden. Der Schaltzustand wird über eine LED angezeigt. Je Kanal kann Spannung und Strom (via $20\,\mathrm{m}\Omega$ Shunt) gemessen werden. Über den eingesetzten I²C-Leistungswächter vom Typ LTC2945 kann neben Spannung (bis 30 VDC) und Strom (bis 5 A) auch die Leistung direkt abgerufen werden.

Abb. 29: 8-polig Micro-Fit 43045-0826 (ST10, ST11)

Pin	ST10	ST11	Bemerkung
1	GND_PC	GND_PC	PC-Masse
2	GND_PC	GND_PC	PC-Masse
3	GND_PC	GND_PC	PC-Masse
4	GND_PC	GND_PC	PC-Masse
5	U_IN	U6_OUT	Relais schaltet U_IN auf U6
6	U_IN	U5_OUT	Relais schaltet U_IN auf U5
7	U_IN	U4_OUT	Relais schaltet U_IN auf U4
8	U_IN	U3_OUT	Relais schaltet U_IN auf U3

Tabelle 16: Anschlussbelegung ST10, ST11

3.5.5 Sense-Anschluss (ST12)

Sense-Anschluss um die Spannung U_IN (siehe ST10) zu überwachen.

Abb. 30: 4-polig Micro-Fit 43045-0426

Pin	ST12	Bemerkung	
1	GND_PC	PC-Masse	
2	n.c.	nicht beschaltet	
3	U_SENSE	Sense-Anschluss für U_IN (von ST10 kommend)	
4	n.c.	nicht beschaltet	

Tabelle 17: Anschlussbelegung ST12

3.6 Relaisboard (ADQ-SCU-RB)

3.6.1 Stiftsteckerleiste JB2 -> JR2

Über die zweireihige Stiftsteckerleiste JB2 -> JR2 wird das Relaisboard mit dem Baseboard verbunden. Es stehen 24 TTL-I/O-Kanäle (DIO_0..23) und 16 einpolige Wechsler-Relais (SPDT, Typ C) zur Verfügung.

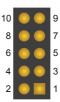


Abb. 31: 10-pol. Stiftsteckerleiste (JB2 / JR2)

Pin	Bemerkung	Pin	Bemerkung
1	GND_PC	2	GND_PC
3	SCL_BASE	4	SDA_BASE
5	GND_PC	6	GND_PC
7	+12 V PC	8	+12 V PC
9	+5 V PC	10	+5 V PC

Tabelle 18: Anschlussbelegung JB2/JR2

3.6.2 Wechsler-Relais (STR1..4)

Anschlüsse der 16 Wechsler-Relais. Es sind alle Schaltkontakte (NO/NC/COM) auf die Stecker STR1..4 geführt. Belastbarkeit je Relais (max. 30 VDC/6 A).

Abb. 32: 4 x 12-polig Micro-Fit 43045-1226 (STR1..4)

Pin	STR1	STR2	STR3	STR4
1	NO_0 (Relais 0)	NO_4 (Relais 4)	NO_8 (Relais 8)	NO_12 (Relais 12)
2	COM_0 (Relais 0)	COM_4 (Relais 4)	COM_8 (Relais 8)	COM_12 (Relais 12)
3	NC_0 (Relais 0)	NC_4 (Relais 4)	NC_8 (Relais 8)	NC_12 (Relais 12)
4	NC_3 (Relais 3)	NC_7 (Relais 7)	NC_11 (Relais 11)	NC_15 (Relais 15)
5	COM_3 (Relais 3)	COM_7 (Relais 7)	COM_11 (Relais 11)	COM_15 (Relais 15)
6	NO_3 (Relais 3)	NO_7 (Relais 7)	NO_11 (Relais 11)	NO_15 (Relais 15)
7	NC_1 (Relais 1)	NC_5 (Relais 5)	NC_9 (Relais 9)	NC_13 (Relais 13)
8	COM_1 (Relais 1)	COM_5 (Relais 5)	COM_9 (Relais 9)	COM_13 (Relais 13)
9	NO_1 (Relais 1)	NO_5 (Relais 5)	NO_9 (Relais 9)	NO_13 (Relais 13)
10	NO_2 (Relais 2)	NO_6 (Relais 6)	NO_10 (Relais 10)	NO_14 (Relais 14)
11	COM_2 (Relais 2)	COM_6 (Relais 6)	COM_10 (Relais 10)	COM_14 (Relais 14)
12	NC_2 (Relais 2)	NC_6 (Relais 6)	NC_10 (Relais 10)	NC_14 (Relais 14)

Tabelle 19: Anschlussbelegung STR1..4

Hinweis: Korrespondierend mit der Software beginnt der Index der Relais bei "0".

3.6.3 TTL-Digital-Ein-/Ausgänge (STR5..7)

An den Anschlüssen STR5..7 stehen insgesamt 24 Digital-Ein-/Ausgänge zur Verfügung, die über den I²C-Bus geschaltet und der Zustand gelesen werden kann. Die Ein-/Ausgänge sind für TTL-Pegel ausgelegt mit einer max. Belastbarkeit je Kanal von 10 mA (Source) und 25 mA (Sink).

Abb. 33: 3 x 10-polig Micro-Fit 43045-1026 (STR5..7)

Pin	STR5	STR6	STR7
1	DIO_4	DIO_12	DIO_20
2	DIO_5	DIO_13	DIO_21
3	DIO_6	DIO_14	DIO_22
4	DIO_7	DIO_15	DIO_23
5	GND_PC	GND_PC	GND_PC
6	DIO_3	DIO_11	DIO_19
7	DIO_2	DIO_10	DIO_18
8	DIO_1	DIO_9	DIO_17
9	DIO_0	DIO_8	DIO_16
10	+5V PC	+5V PC	+5V PC

Tabelle 20: Anschlussbelegung STR5..7

3.6.4 STR8 (nicht bestückt)

Spannungszufuhr vom PC-Netzteil für Relaisboard (+5 V / +12 V).

Steckertyp: 1 x 4-polig Molex, 8981-Serie (90°)

Pin	STR8
1	+12 V PC
2	GND_PC
3	GND_PC
4	+5 V PC

Tabelle 21: Anschlussbelegung STR8

3.7 Kundenspezifische Aufsteckplatinen (CB1..3)

Über die einreihigen Stiftsteckerleisten JB3..5 können drei kundenspezifische Aufsteckplatinen (CB1..3) mit dem Baseboard verbunden werden.

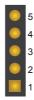


Abb. 34: 3 x 5-pol. Stiftsteckerleiste (JB3..5)

Pin	JB3 (CB1)	JB4 (CB2)	JB5 (CB3)
1	GND_PC	GND_PC	GND_PC
2	SCL_CB1	SCL_CB2	SCL_CB3
3	SDA_CB1	SDA_CB2	SDA_CB3
4	+12 V PC	+12 V PC	+12 V PC
5	+5 V PC	+5 V PC	+5 V PC

Tabelle 22: Anschlussbelegung JB3..5

36 I²C-Adressen

Hinweis: Die I²C-Adressen werden sowohl als 7 bit Wert (nur Slave-Adresse) als auch 8 bit Wert (Slave-Adresse + Schreib-/Lese-Bit als LSB) angegeben. Die Hexadezimal-Schreibweise wird durch ein nachgestelltes "h" gekennzeichnet.

Über den I²C-Port der ADQ-344 können Sie in einem Übertragungszyklus bis zu vier Daten-Bytes senden.

4.1 Adressen im Überblick

Beschreibung	Baustein	I ² C-Adresse (7-Bit/8-Bit)			
Baseboard ADQ-SCU-BB – AO-Teil					
AO-Teil Analogausgang am LTC6090-5 deaktivieren	PCA9698	12h / 24h			
Baseboard ADQ-SCU-BB – Steuer-Relais					
AO-Teil s.e./diff-Umschaltung, Stummschaltung, geschaltete Versorgungen (Switch 14)	PCA9698	13h / 26h			
AI-Teil (AI_015) AC/DC-Kopplung, Dämpfung, Relais-Abhörstufe	PCA9698	28h / 50h			
AI-Teil (AI_1631) AC/DC-Kopplung, Dämpfung, Kopfhörer-Ausgang	PCA9698	29h / 52h			
Baseboard ADQ-SCU-BB – Abhörstufe mit Kopfhörer-Vers	tärker				
Stereo-Kopfhörer-Verstärker mit BassMax, Lautstärkeregelung und I ² C	MAX9723	4Ch / 98h			
Baseboard ADQ-SCU-BB – AI-Modul 0					
AI-Modul 0 (AI_04), digitale Filterstufe	PCA9698	22h / 44h			
AI-Modul 0 (AI_57), digitale Filterstufe, Abhörstufe Filter (links/rechts)	PCA9698	23h / 46h			
Al-Modul 0, 8-Kanal Analog-Multiplexer	PCF8574	20h / 40h			
Baseboard ADQ-SCU-BB – AI-Modul 1					
AI-Modul 1 (AI_812), digitale Filterstufe	PCA9698	24h / 48h			
AI-Modul 1 (AI_1315), digitale Filterstufe, 8-Kanal Analog-Multiplexer	PCA9698	25h / 4Ah			
Baseboard ADQ-SCU-BB – AI-Modul 2					
Al-Modul 2 (Al_1620), digitale Filterstufe	PCA9698	26h / 4Ch			
AI-Modul 2 (AI_2123), digitale Filterstufe, 8-Kanal Analog-Multiplexer	PCA9698	27h / 4Eh			
Baseboard ADQ-SCU-BB – AI-Modul 3					
AI-Modul 3 (AI_2428), digitale Filterstufe	PCA9698	10h / 20h			
AI-Modul 3 (AI_2931), digitale Filterstufe, 8-Kanal Analog-Multiplexer	PCA9698	11h / 22h			
Baseboard ADQ-SCU-BB – I ² C-Switcher					
4-Kanal I ² C-Master/Slave-Switch	PCA9546A	70h / E0h			
Baseboard ADQ-SCU-BB – I ² C-Temperaturüberwachung					
l ² C-Temperaturüberwachung mit Schwellwerteinstellung und Alarmausgang	LM75a	47h / 9Eh			

Beschreibung	Baustein	I ² C-Adresse (7-Bit/8-Bit)
Baseboard ADQ-SCU-BB – I ² C-EEPROM		
EEPROM zum Speichern anwenderspezifischer Daten	M24256-BR	50h / A0h
Relaisboard ADQ-SCU-RB – Relais-Aufsteckboard		
Relais-Aufsteckboard mit 16 Wechsler-Relais (SPDT), 24 TTL-I/Os	PCA9698	14h / 28h
Powerboard ADQ-SCU-PB – Power-Aufsteckboard		
Relais-Ansteuerung (U16): 2 Hochstrom-Relais, 4 Standard-Relais	PCF8574A	39h / 72h
Leistungsmessung (Kanal U3)	LTC2945	6Fh / DEh
Leistungsmessung (Kanal U4)	LTC2945	6Ch/ D8h
Leistungsmessung (Kanal U5)	LTC2945	67h / CEh
Leistungsmessung (Kanal U6)	LTC2945	69h / D2h

4.2 Grenzfrequenz und Verstärkung des LTC1564

Die Grenzfrequenz ist proportional zum Binärwert F3..0.

F3	F2	F1	F0	Grenzfrequenz	G3	G2	G1	G0	Verstärkung (Spannungsverhältnis)	Verstärkung (dB)
0	0	0	0	Mute	0	0	0	0	1	0
0	0	0	1	10 kHz	0	0	0	1	2	6,0
0	0	1	0	20 kHz	0	0	1	0	3	9,5
0	0	1	1	30 kHz	0	0	1	1	4	12,0
0	1	0	0	40 kHz	0	1	0	0	5	14,0
0	1	0	1	50 kHz	0	1	0	1	6	15,6
0	1	1	0	60 kHz	0	1	1	0	7	16,9
0	1	1	1	70 kHz	0	1	1	1	8	18,1
1	0	0	0	80 kHz	1	0	0	0	9	19,1
1	0	0	1	90 kHz	1	0	0	1	10	20,0
1	0	1	0	100 kHz	1	0	1	0	11	20,8
1	0	1	1	110 kHz	1	0	1	1	12	21,6
1	1	0	0	120 kHz	1	1	0	0	13	22,3
1	1	0	1	130 kHz	1	1	0	1	14	22,9
1	1	1	0	140 kHz	1	1	1	0	15	23,5
1	1	1	1	150 kHz	1	1	1	1	16	24,1

Tabelle 23: Codierung Grenzfrequenz und Verstärkung LTC1564

4.3 Baseboard ADQ-SCU-BB

4.3.1 Al-Teil (Al_0..15) AC/DC-Kopplung, Dämpfung, Relais Abhörstufe

I ² C-Bausteir	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCA9698	28h	50h	Ansteuerung Port 05 mit positiver Logik (via TBD62083A), Ausgänge als Source-Treiber konfigurieren; => Register 28h = 11h (Default)

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IO0_0	REL_CH7_ACDC_M0	AC/DC-Kopplung AI_7+	Kopplung: AC
PORT_IO0_1	REL_CH6_ACDC_M0	AC/DC-Kopplung AI_6+	Kopplung: AC
PORT_IO0_2	REL_CH5_ACDC_M0	AC/DC-Kopplung AI_5+	Kopplung: AC
PORT_IOO_3	REL_CH4_ACDC_M0	AC/DC-Kopplung AI_4+	Kopplung: AC
PORT_IOO_4	REL_CH3_ACDC_M0	AC/DC-Kopplung AI_3+	Kopplung: AC
PORT_IO0_5	REL_CH2_ACDC_M0	AC/DC-Kopplung AI_2+	Kopplung: AC
PORT_IOO_6	REL_CH1_ACDC_M0	AC/DC-Kopplung Al_1+	Kopplung: AC
PORT_IOO_7	REL_CH0_ACDC_M0	AC/DC-Kopplung AI_0+	Kopplung: AC
PORT_IO1_0	REL_7_M0	Dämpfung AI_7+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_1	REL_6_M0	Dämpfung AI_6+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_2	REL_5_M0	Dämpfung AI_5+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_3	REL_4_M0	Dämpfung AI_4+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_4	REL_3_M0	Dämpfung AI_3+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_5	REL_2_M0	Dämpfung AI_2+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_6	REL_1_M0	Dämpfung Al_1+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_7	REL_0_M0	Dämpfung AI_0+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO2_0	REL_CH0_ACDC_M1	AC/DC-Kopplung AI_8+	Kopplung: AC
PORT_IO2_1	REL_CH1_ACDC_M1	AC/DC-Kopplung AI_9+	Kopplung: AC
PORT_IO2_2	REL_CH2_ACDC_M1	AC/DC-Kopplung AI_10+	Kopplung: AC
PORT_IO2_3	REL_CH3_ACDC_M1	AC/DC-Kopplung AI_11+	Kopplung: AC
PORT_IO2_4	REL_CH4_ACDC_M1	AC/DC-Kopplung AI_12+	Kopplung: AC
PORT_IO2_5	REL_CH5_ACDC_M1	AC/DC-Kopplung AI_13+	Kopplung: AC
PORT_IO2_6	REL_CH6_ACDC_M1	AC/DC-Kopplung AI_14+	Kopplung: AC
PORT_IO2_7	REL_CH7_ACDC_M1	AC/DC-Kopplung AI_15+	Kopplung: AC

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IO3_0	REL_0_M1	Dämpfung AI_8+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_1	REL_1_M1	Dämpfung AI_9+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_2	REL_2_M1	Dämpfung Al_10+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_3	REL_3_M1	Dämpfung AI_11+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_4	REL_4_M1	Dämpfung Al_12+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_5	REL_5_M1	Dämpfung Al_13+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_6	REL_6_M1	Dämpfung Al_14+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_7	REL_7_M1	Dämpfung AI_15+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO4_0	ABH_RE_M3	Abhör-Relais für Al-Modul 3 (Al_2431) – rechter Kanal	OFF (kein Kanal auf Abhörstufe MAX9723 geschaltet)
PORT_IO4_1	ABH_LI_M3	Abhör-Relais für Al-Modul 3 (Al_2431) – linker Kanal	OFF (kein Kanal auf Abhör- stufe MAX9723 geschaltet)
PORT_IO4_2	ABH_RE_M2	Abhör-Relais für AI-Modul 2 (AI_1623) – rechter Kanal	OFF (kein Kanal auf Abhör- stufe MAX9723 geschaltet)
PORT_IO4_3	ABH_LI_M2	Abhör-Relais für AI-Modul 2 (AI_1623) – linker Kanal	OFF (kein Kanal auf Abhör- stufe MAX9723 geschaltet)
PORT_IO4_4	ABH_RE_M1	Abhör-Relais für AI-Modul 1 (AI_815) – rechter Kanal	OFF (kein Kanal auf Abhör- stufe MAX9723 geschaltet)
PORT_IO4_5	ABH_LI_M1	Abhör-Relais für AI-Modul 1 (AI_815) – linker Kanal	OFF (kein Kanal auf Abhör- stufe MAX9723 geschaltet)
PORT_IO4_6	ABH_RE_M0	Abhör-Relais für Al-Modul 0 (Al_07) – rechter Kanal	OFF (kein Kanal auf Abhör- stufe MAX9723 geschaltet)
PORT_IO4_7	ABH_LI_M0	Abhör-Relais für AI-Modul 0 (AI_07) – linker Kanal	OFF (kein Kanal auf Abhörstufe MAX9723 geschaltet)

4.3.2 Al-Teil (Al_16..31) AC/DC-Kopplung, Dämpfung, Kopfhörer-Ausgang

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCA9698	29h	52h	Ansteuerung Port 05 mit positiver Logik (via TBD62083A), Ausgänge als Source-Treiber konfigurieren; => Register 28h = 11h (Default)

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IOO_0	REL_CH7_ACDC_M2	AC/DC-Kopplung AI_23+	Kopplung: AC
PORT_IOO_1	REL_CH6_ACDC_M2	AC/DC-Kopplung AI_22+	Kopplung: AC
PORT_IO0_2	REL_CH5_ACDC_M2	AC/DC-Kopplung AI_21+	Kopplung: AC
PORT_IO0_3	REL_CH4_ACDC_M2	AC/DC-Kopplung AI_20+	Kopplung: AC
PORT_IOO_4	REL_CH3_ACDC_M2	AC/DC-Kopplung AI_19+	Kopplung: AC
PORT_IO0_5	REL_CH2_ACDC_M2	AC/DC-Kopplung AI_18+	Kopplung: AC
PORT_IO0_6	REL_CH1_ACDC_M2	AC/DC-Kopplung AI_17+	Kopplung: AC
PORT_IOO_7	REL_CH0_ACDC_M2	AC/DC-Kopplung AI_16+	Kopplung: AC
PORT_IO1_0	REL_7_M2	Dämpfung AI_23+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_1	REL_6_M2	Dämpfung AI_22+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_2	REL_5_M2	Dämpfung AI_21+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_3	REL_4_M2	Dämpfung AI_20+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_4	REL_3_M2	Dämpfung Al_19+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_5	REL_2_M2	Dämpfung Al_18+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_6	REL_1_M2	Dämpfung AI_17+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO1_7	REL_0_M2	Dämpfung Al_16+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO2_0	REL_CH0_ACDC_M3	AC/DC-Kopplung AI_24+	Kopplung: AC
PORT_IO2_1	REL_CH1_ACDC_M3	AC/DC-Kopplung AI_25+	Kopplung: AC
PORT_IO2_2	REL_CH2_ACDC_M3	AC/DC-Kopplung AI_26+	Kopplung: AC
PORT_IO2_3	REL_CH3_ACDC_M3	AC/DC-Kopplung AI_27+	Kopplung: AC
PORT_IO2_4	REL_CH4_ACDC_M3	AC/DC-Kopplung AI_28+	Kopplung: AC
PORT_IO2_5	REL_CH5_ACDC_M3	AC/DC-Kopplung AI_29+	Kopplung: AC
PORT_IO2_6	REL_CH6_ACDC_M3	AC/DC-Kopplung AI_30+	Kopplung: AC
PORT_IO2_7	REL_CH7_ACDC_M3	AC/DC-Kopplung AI_31+	Kopplung: AC

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IO3_0	REL_0_M3	Dämpfung AI_24+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_1	REL_1_M3	Dämpfung AI_25+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_2	REL_2_M3	Dämpfung AI_26+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_3	REL_3_M3	Dämpfung AI_27+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_4	REL_4_M3	Dämpfung AI_28+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_5	REL_5_M3	Dämpfung AI_29+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_6	REL_6_M3	Dämpfung AI_30+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO3_7	REL_7_M3	Dämpfung AI_31+ (0dB/-36dB)	Dämpfung: -36dB
PORT_IO4_0	ABH_LI_KOPFH	Abhörsignal am Ausgang MAX9723 zum Kopfhörer – linker Kanal	OFF (Verbindung zwischen Abhörstufe und STB19 offen)
PORT_IO4_1	ABH_RE_KOPFH	Abhörsignal am Ausgang MAX9723 zum Kopfhörer – rechter Kanal	OFF (Verbindung zwischen Abhörstufe und STB19 offen)
PORT_IO4_2	reserviert		
PORT_IO4_3	reserviert		
PORT_IO4_4	reserviert		
PORT_IO4_5	reserviert		
PORT_IO4_6	reserviert		
PORT_IO4_7	reserviert		

4.3.3 AO-Teil s.e./diff-Umschaltung, Stummschaltung, schaltbare Versorgungen

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCA9698	13h	26h	Ansteuerung Port 02 mit positiver Logik (via TBD62083A), Ausgänge als Source-Treiber konfigurieren; => Register 28h = 11h (Default)

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IOO_0	AO_REL_7_SEDIFF	Ausgabe AO_H± single ended/differentiell	single ended (AO_H- = GND_AO)
PORT_IOO_1	AO_REL_6_SEDIFF	Ausgabe AO_G± single ended/differentiell	single ended (AO_G- = GND_AO)
PORT_IO0_2	AO_REL_5_SEDIFF	Ausgabe AO_F± single ended/differentiell	single ended (AO_F- = GND_AO)
PORT_IOO_3	AO_REL_4_SEDIFF	Ausgabe AO_E± single ended/differentiell	single ended (AO_E- = GND_AO)
PORT_IOO_4	AO_REL_3_SEDIFF	Ausgabe AO_D± single ended/differentiell	single ended (AO_D- = GND_AO)
PORT_IO0_5	AO_REL_2_SEDIFF	Ausgabe AO_C± single ended/differentiell	single ended (AO_C- = GND_AO)
PORT_IOO_6	AO_REL_1_SEDIFF	Ausgabe AO_B± single ended/differentiell	single ended (AO_B- = GND_AO)
PORT_IOO_7	AO_REL_0_SEDIFF	Ausgabe AO_A± single ended/differentiell	single ended (AO_A- = GND_AO)
PORT_IO1_0	AO_REL_7_MUTE	Stummschaltung (Mute) AO_H±	Mute = OFF
PORT_IO1_1	AO_REL_6_MUTE	Stummschaltung (Mute) AO_G±	Mute = OFF
PORT_IO1_2	AO_REL_5_MUTE	Stummschaltung (Mute) AO_F±	Mute = OFF
PORT_IO1_3	AO_REL_4_MUTE	Stummschaltung (Mute) AO_E±	Mute = OFF
PORT_IO1_4	AO_REL_3_MUTE	Stummschaltung (Mute) AO_D±	Mute = OFF
PORT_IO1_5	AO_REL_2_MUTE	Stummschaltung (Mute) AO_C±	Mute = OFF
PORT_IO1_6	AO_REL_1_MUTE	Stummschaltung (Mute) AO_B±	Mute = OFF
PORT_IO1_7	AO_REL_O_MUTE	Stummschaltung (Mute) AO_A±	Mute = OFF
PORT_IO2_0	REL_12V_1_INT	Geschaltete 12 V Versorgung vom PC (Switch 1)	OFF
PORT_IO2_1	REL_VCC_1_INT	Geschaltete 5 V Versorgung vom PC (Switch 1)	OFF
PORT_IO2_2	REL_12V_2_INT	Geschaltete 12 V Versorgung vom PC (Switch 2)	OFF
PORT_IO2_3	REL_VCC_2_INT	Geschaltete 5 V Versorgung vom PC (Switch 2)	OFF

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IO2_4	REL_12V_4_INT	Geschaltete 12 V Versorgung vom PC (Switch 4)	OFF
PORT_IO2_5	REL_VCC_4_INT	Geschaltete 5 V Versorgung vom PC (Switch 4)	OFF
PORT_IO2_6	REL_12V_3_INT	Geschaltete 12 V Versorgung vom PC (Switch 3)	OFF
PORT_IO2_7	REL_VCC_3_INT	Geschaltete 5 V Versorgung vom PC (Switch 3)	OFF
PORT_IO3_0	reserviert		
PORT_IO3_1	reserviert		
PORT_IO3_2	reserviert		
PORT_103_3	reserviert		
PORT_IO3_4	reserviert		
PORT_IO3_5	reserviert		
PORT_IO3_6	reserviert		
PORT_IO3_7	reserviert		
PORT_IO4_0	reserviert		
PORT_IO4_1	reserviert		
PORT_IO4_2	reserviert		
PORT_IO4_3	reserviert		
PORT_IO4_4	reserviert		
PORT_IO4_5	reserviert		
PORT_IO4_6	reserviert		
PORT_IO4_7	reserviert		

4.3.4 AO-Teil Analogausgang am LTC6090-5 deaktivieren

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCA9698	12h	24h	Ansteuerung Port 0 mit negativer Logik, Ausgänge als Sink-Treiber konfigurieren; => Register 28h = 11h (Default)

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IOO_0	AO_OUT3_B_EN	Analogausgang AO_H± ON/OFF (LTC6090-5)	Ausgang deaktiviert
PORT_IO0_1	AO_OUT3_A_EN	Analogausgang AO_G± ON/OFF (LTC6090-5)	Ausgang deaktiviert
PORT_IO0_2	AO_OUT2_B_EN	Analogausgang AO_F± ON/OFF (LTC6090-5)	Ausgang deaktiviert
PORT_IO0_3	AO_OUT2_A_EN	Analogausgang AO_E± ON/OFF (LTC6090-5)	Ausgang deaktiviert
PORT_IOO_4	AO_OUT1_B_EN	Analogausgang AO_D± ON/OFF (LTC6090-5)	Ausgang deaktiviert
PORT_IO0_5	AO_OUT1_A_EN	Analogausgang AO_C± ON/OFF (LTC6090-5)	Ausgang deaktiviert
PORT_IOO_6	AO_OUTO_B_EN	Analogausgang AO_B± ON/OFF (LTC6090-5)	Ausgang deaktiviert
PORT_IO0_7	AO_OUTO_A_EN	Analogausgang AO_A± ON/OFF (LTC6090-5)	Ausgang deaktiviert
PORT_IO1_0	reserviert		
PORT_IO1_1	reserviert		
PORT_IO1_2	reserviert		
PORT_IO1_3	reserviert		
PORT_IO1_4	reserviert		
PORT_IO1_5	reserviert		
PORT_IO1_6	reserviert		
PORT_IO1_7	reserviert		
PORT_IO2_0	reserviert		
PORT_IO2_1	reserviert		
PORT_IO2_2	reserviert		
PORT_IO2_3	reserviert		
PORT_IO2_4	reserviert		
PORT_IO2_5	reserviert		
PORT_IO2_6	reserviert		
PORT_IO2_7	reserviert		

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IO3_0	reserviert		
PORT_IO3_1	reserviert		
PORT_IO3_2	reserviert		
PORT_IO3_3	reserviert		
PORT_IO3_4	reserviert		
PORT_IO3_5	reserviert		
PORT_IO3_6	reserviert		
PORT_IO3_7	reserviert		
PORT_IO4_0	reserviert		
PORT_IO4_1	reserviert		
PORT_IO4_2	reserviert		
PORT_IO4_3	reserviert		
PORT_IO4_4	reserviert		
PORT_IO4_5	reserviert		
PORT_IO4_6	reserviert		
PORT_IO4_7	reserviert		

4.3.5 Abhörstufe mit Kopfhörer-Verstärker

	I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
ı	MAX9723	4Ch	98h	

Jeder Al-Kanal ist auf den Stereo-Kopfhörer-Verstärker vom Typ MAX9723 schaltbar. Man kann frei auswählen welcher der Kanäle auf den linken bzw. rechten Kanal des MAX9723 aufgeschaltet werden soll. Am Ausgang des MAX9723 kann man direkt den Kopfhörer anschliessen.

Siehe auch Datenblatt unter:

https://www.maximintegrated.com/en/products/analog/audio/MAX9723.html

4.3.6 Al-Modul 0, 8-Kanal Analog-Multiplexer

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCF8574	20h	40h	Ansteuerung des 8-fach Multiplexers mit positiver Logik (A20)

Port PCF8574	Signal im Schaltplan	Beschreibung	Default
PORT_P0	ABH_R_A0_M0	8-Kanal Multiplexer Al-Modul 0 rechts (DG408), Bit A0	
PORT_P1	ABH_R_A1_M0	8-Kanal Multiplexer Al-Modul 0 rechts (DG408), Bit A1	Kanal 1 von Al-Modul 0 zur Relaisstufe (Li_INT_M0)
PORT_P2	ABH_R_A2_M0	8-Kanal Multiplexer Al-Modul 0 rechts (DG408), Bit A2	
PORT_P3	ABH_L_A0_M0	8-Kanal Multiplexer Al-Modul 0 links (DG408), Bit A0	
PORT_P4	ABH_L_A1_M0	8-Kanal Multiplexer Al-Modul 0 links (DG408), Bit A1	Kanal 1 von Al-Modul 0 zur Relaisstufe (Re_INT_M0)
PORT_P5	ABH_L_A2_M0	8-Kanal Multiplexer Al-Modul 0 links (DG408), Bit A2	
PORT_P6	reserviert		
PORT_P7	reserviert		

4.3.7 Al-Modul 0 (Al_0..4), digitale Filterstufe

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCA9698	22h	44h	Ansteuerung Port 05 mit negativer Logik, Ausgänge als Sink-Treiber konfigurieren; => Register 28h = 00h

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IOO_0	CH_4_F0_M0	Digitale Filterstufe AI_4 (LTC1564a), Bit F0	
PORT_IOO_1	CH_4_F1_M0	Digitale Filterstufe AI_4 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IOO_2	CH_4_F2_M0	Digitale Filterstufe AI_4 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_3	CH_4_F3_M0	Digitale Filterstufe AI_4 (LTC1564a), Bit F3	
PORT_IOO_4	CH_4_G0_M0	Digitale Filterstufe AI_4 (LTC1564a), Bit G0	
PORT_IOO_5	CH_4_G1_M0	Digitale Filterstufe AI_4 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IOO_6	CH_4_G2_M0	Digitale Filterstufe AI_4 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_7	CH_4_G3_M0	Digitale Filterstufe AI_4 (LTC1564a), Bit G3	
PORT_IO1_0	CH_3_F0_M0	Digitale Filterstufe AI_3 (LTC1564a), Bit F0	
PORT_IO1_1	CH_3_F1_M0	Digitale Filterstufe AI_3 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO1_2	CH_3_F2_M0	Digitale Filterstufe AI_3 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_3	CH_3_F3_M0	Digitale Filterstufe AI_3 (LTC1564a), Bit F3	
PORT_IO1_4	CH_3_G0_M0	Digitale Filterstufe AI_3 (LTC1564a), Bit G0	
PORT_IO1_5	CH_3_G1_M0	Digitale Filterstufe AI_3 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IO1_6	CH_3_G2_M0	Digitale Filterstufe AI_3 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_7	CH_3_G3_M0	Digitale Filterstufe AI_3 (LTC1564a), Bit G3	
PORT_IO2_0	CH_0_F0_M0	Digitale Filterstufe AI_0 (LTC1564a), Bit F0	
PORT_IO2_1	CH_0_F1_M0	Digitale Filterstufe AI_0 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO2_2	CH_0_F2_M0	Digitale Filterstufe AI_0 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_3	CH_0_F3_M0	Digitale Filterstufe AI_0 (LTC1564a), Bit F3	

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IO2_4	CH_0_G3_M0	Digitale Filterstufe AI_0 (LTC1564a), Bit G3	
PORT_IO2_5	CH_0_G2_M0	Digitale Filterstufe AI_0 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO2_6	CH_0_G1_M0	Digitale Filterstufe AI_0 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_7	CH_0_G0_M0	Digitale Filterstufe AI_0 (LTC1564a), Bit G0	
PORT_IO3_0	CH_1_F3_M0	Digitale Filterstufe AI_1 (LTC1564a), Bit F3	
PORT_IO3_1	CH_1_F2_M0	Digitale Filterstufe AI_1 (LTC1564a), Bit F2	Grenzfrequenz: 150 kHz
PORT_IO3_2	CH_1_F1_M0	Digitale Filterstufe AI_1 (LTC1564a), Bit F1	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO3_3	CH_1_F0_M0	Digitale Filterstufe AI_1 (LTC1564a), Bit F0	
PORT_IO3_4	CH_1_G3_M0	Digitale Filterstufe AI_1 (LTC1564a), Bit G3	
PORT_IO3_5	CH_1_G2_M0	Digitale Filterstufe AI_1 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO3_6	CH_1_G1_M0	Digitale Filterstufe AI_1 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO3_7	CH_1_G0_M0	Digitale Filterstufe AI_1 (LTC1564a), Bit G0	
			'
PORT_IO4_0	CH_2_F3_M0	Digitale Filterstufe AI_2 (LTC1564a), Bit F3	
PORT_IO4_1	CH_2_F2_M0	Digitale Filterstufe AI_2 (LTC1564a), Bit F2	Grenzfrequenz: 150 kHz
PORT_IO4_2	CH_2_F1_M0	Digitale Filterstufe AI_2 (LTC1564a), Bit F1	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO4_3	CH_2_F0_M0	Digitale Filterstufe AI_2 (LTC1564a), Bit F0	
PORT_IO4_4	CH_2_G3_M0	Digitale Filterstufe AI_2 (LTC1564a), Bit G3	
PORT_IO4_5	CH_2_G2_M0	Digitale Filterstufe AI_2 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO4_6	CH_2_G1_M0	Digitale Filterstufe AI_2 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO4_7	CH_2_G0_M0	Digitale Filterstufe AI_2 (LTC1564a), Bit G0	

4.3.8 Al-Modul 0 (Al_5..7), digitale Filterstufe, Abhörstufe Filter

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCA9698	23h	46h	Ansteuerung Port 02 mit negativer Logik, Ausgänge als Sink-Treiber konfigurieren; Ansteuerung Port 34 mit positiver Logik, Ausgänge als Source-Treiber konfigurieren => Register 28h = C0h

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IOO_0	CH_7_F0_M0	Digitale Filterstufe AI_7 (LTC1564a), Bit F0	
PORT_IOO_1	CH_7_F1_M0	Digitale Filterstufe AI_7 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IOO_2	CH_7_F2_M0	Digitale Filterstufe AI_7 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_3	CH_7_F3_M0	Digitale Filterstufe AI_7 (LTC1564a), Bit F3	
PORT_IOO_4	CH_7_G0_M0	Digitale Filterstufe AI_7 (LTC1564a), Bit G0	
PORT_IOO_5	CH_7_G1_M0	Digitale Filterstufe AI_7 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IOO_6	CH_7_G2_M0	Digitale Filterstufe AI_7 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_7	CH_7_G3_M0	Digitale Filterstufe AI_7 (LTC1564a), Bit G3	
PORT_IO1_0	CH_6_F0_M0	Digitale Filterstufe AI_6 (LTC1564a), Bit F0	
PORT_IO1_1	CH_6_F1_M0	Digitale Filterstufe AI_6 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO1_2	CH_6_F2_M0	Digitale Filterstufe AI_6 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_3	CH_6_F3_M0	Digitale Filterstufe AI_6 (LTC1564a), Bit F3	
PORT_IO1_4	CH_6_G0_M0	Digitale Filterstufe AI_6 (LTC1564a), Bit G0	
PORT_IO1_5	CH_6_G1_M0	Digitale Filterstufe AI_6 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IO1_6	CH_6_G2_M0	Digitale Filterstufe AI_6 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_7	CH_6_G3_M0	Digitale Filterstufe AI_6 (LTC1564a), Bit G3	
PORT_IO2_0	CH_5_F0_M0	Digitale Filterstufe AI_5 (LTC1564a), Bit F0	
PORT_IO2_1	CH_5_F1_M0	Digitale Filterstufe AI_5 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO2_2	CH_5_F2_M0	Digitale Filterstufe AI_5 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_3	CH_5_F3_M0	Digitale Filterstufe AI_5 (LTC1564a), Bit F3	

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IO2_4	CH_5_G3_M0	Digitale Filterstufe AI_5 (LTC1564a), Bit G3	
PORT_IO2_5	CH_5_G2_M0	Digitale Filterstufe AI_5 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO2_6	CH_5_G1_M0	Digitale Filterstufe AI_5 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_7	CH_5_G0_M0	Digitale Filterstufe AI_5 (LTC1564a), Bit G0	
	1	ALL	
PORT_IO3_0	ABH_Re_G3	Abhörstufe M0 Filter rechts (LTC1564a), Bit G3	
PORT_IO3_1	ABH_Re_G2	Abhörstufe M0 Filter rechts (LTC1564a), Bit G2	Grenzfrequenz: 150 kHz
PORT_IO3_2	ABH_Re_G1	Abhörstufe M0 Filter rechts (LTC1564a), Bit G1	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO3_3	ABH_Re_G0	Abhörstufe M0 Filter rechts (LTC1564a), Bit G0	
PORT_IO3_4	ABH_Re_F3	Abhörstufe M0 Filter rechts (LTC1564a), Bit F3	
PORT_IO3_5	ABH_Re_F2	Abhörstufe M0 Filter rechts (LTC1564a), Bit F2	Verstärkungsfaktor = 16
PORT_IO3_6	ABH_Re_F1	Abhörstufe M0 Filter rechts (LTC1564a), Bit F1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO3_7	ABH_Re_F0	Abhörstufe M0 Filter rechts (LTC1564a), Bit F0	
PORT_IO4_0	ABH_Li_G3	Abhörstufe M0 Filter links (LTC1564a), Bit G3	
PORT_IO4_1	ABH_Li_G2	Abhörstufe M0 Filter links (LT- C1564a), Bit G2	Grenzfrequenz: 150 kHz
PORT_IO4_2	ABH_Li_G1	Abhörstufe M0 Filter links (LTC1564a), Bit G1	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO4_3	ABH_Li_G0	Abhörstufe M0 Filter links (LTC1564a), Bit G0	
PORT_IO4_4	ABH_Li_F3	Abhörstufe M0 Filter links (LT- C1564a), Bit F3	
PORT_IO4_5	ABH_Li_F2	Abhörstufe M0 Filter links (LTC1564a), Bit F2	Verstärkungsfaktor = 16
PORT_IO4_6	ABH_Li_F1	Abhörstufe M0 Filter links (LTC1564a), Bit F1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO4_7	ABH_Li_F0	Abhörstufe M0 Filter links (LTC1564a), Bit F0	

4.3.9 Al-Modul 1 (Al_8..12), digitale Filterstufe

I ² C-Bauste	in	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCA9698		24h	48h	Ansteuerung Port 05 mit negativer Logik, Ausgänge als Sink-Treiber konfigurieren; => Register 28h = C0h

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IOO_0	CH_4_F0_M1	Digitale Filterstufe AI_12 (LTC1564a), Bit F0	
PORT_IOO_1	CH_4_F1_M1	Digitale Filterstufe AI_12 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IOO_2	CH_4_F2_M1	Digitale Filterstufe AI_12 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_3	CH_4_F3_M1	Digitale Filterstufe AI_12 (LTC1564a), Bit F3	
PORT_IOO_4	CH_4_G0_M1	Digitale Filterstufe AI_12 (LTC1564a), Bit G0	
PORT_IO0_5	CH_4_G1_M1	Digitale Filterstufe AI_12 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IOO_6	CH_4_G2_M1	Digitale Filterstufe AI_12 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_7	CH_4_G3_M1	Digitale Filterstufe AI_12 (LTC1564a), Bit G3	
PORT_IO1_0	CH_3_F0_M1	Digitale Filterstufe AI_11 (LTC1564a), Bit F0	
PORT_IO1_1	CH_3_F1_M1	Digitale Filterstufe AI_11 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO1_2	CH_3_F2_M1	Digitale Filterstufe AI_11 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_3	CH_3_F3_M1	Digitale Filterstufe AI_11 (LTC1564a), Bit F3	
PORT_IO1_4	CH_3_G0_M1	Digitale Filterstufe AI_11 (LTC1564a), Bit G0	
PORT_IO1_5	CH_3_G1_M1	Digitale Filterstufe AI_11 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IO1_6	CH_3_G2_M1	Digitale Filterstufe AI_11 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_7	CH_3_G3_M1	Digitale Filterstufe AI_11 (LTC1564a), Bit G3	
PORT_IO2_0	CH_0_F0_M1	Digitale Filterstufe AI_8 (LTC1564a), Bit F0	
PORT_IO2_1	CH_0_F1_M1	Digitale Filterstufe AI_8 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO2_2	CH_0_F2_M1	Digitale Filterstufe AI_8 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_3	CH_0_F3_M1	Digitale Filterstufe AI_8 (LTC1564a), Bit F3	

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IO2_4	CH_0_G3_M1	Digitale Filterstufe AI_8 (LTC1564a), Bit G3	
PORT_IO2_5	CH_0_G2_M1	Digitale Filterstufe AI_8 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO2_6	CH_0_G1_M1	Digitale Filterstufe AI_8 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_7	CH_0_G0_M1	Digitale Filterstufe AI_8 (LTC1564a), Bit G0	
		·	
PORT_IO3_0	CH_1_F3_M1	Digitale Filterstufe AI_9 (LTC1564a), Bit F3	
PORT_IO3_1	CH_1_F2_M1	Digitale Filterstufe AI_9 (LTC1564a), Bit F2	Grenzfrequenz: 150 kHz
PORT_IO3_2	CH_1_F1_M1	Digitale Filterstufe AI_9 (LTC1564a), Bit F1	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO3_3	CH_1_F0_M1	Digitale Filterstufe AI_9 (LTC1564a), Bit F0	
PORT_IO3_4	CH_1_G3_M1	Digitale Filterstufe AI_9 (LTC1564a), Bit G3	
PORT_IO3_5	CH_1_G2_M1	Digitale Filterstufe AI_9 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO3_6	CH_1_G1_M1	Digitale Filterstufe AI_9 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO3_7	CH_1_G0_M1	Digitale Filterstufe AI_9 (LTC1564a), Bit G0	
PORT_IO4_0	CH_2_F3_M1	Digitale Filterstufe AI_10 (LTC1564a), Bit F3	
PORT_IO4_1	CH_2_F2_M1	Digitale Filterstufe AI_10 (LTC1564a), Bit F2	Grenzfrequenz: 150 kHz
PORT_IO4_2	CH_2_F1_M1	Digitale Filterstufe AI_10 (LTC1564a), Bit F1	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO4_3	CH_2_F0_M1	Digitale Filterstufe AI_10 (LTC1564a), Bit F0	
PORT_IO4_4	CH_2_G3_M1	Digitale Filterstufe AI_10 (LTC1564a), Bit G3	
PORT_IO4_5	CH_2_G2_M1	Digitale Filterstufe AI_10 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO4_6	CH_2_G1_M1	Digitale Filterstufe AI_10 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO4_7	CH_2_G0_M1	Digitale Filterstufe AI_10 (LTC1564a), Bit G0	

4.3.10 Al-Modul 1 (Al_13..15), digitale Filterstufe, 8-Kanal Multiplexer

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCA9698	25h	4Ah	Ansteuerung Port 02 mit negativer Logik, Ausgänge als Sink-Treiber konfigurieren; Ansteuerung Port 3 mit positiver Logik, Ausgänge als Source-Treiber konfigurieren => Register 28h = C0h

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IOO_0	CH_7_F0_M1	Digitale Filterstufe AI_15 (LTC1564a), Bit F0	
PORT_IOO_1	CH_7_F1_M1	Digitale Filterstufe AI_15 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IOO_2	CH_7_F2_M1	Digitale Filterstufe AI_15 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_3	CH_7_F3_M1	Digitale Filterstufe AI_15 (LTC1564a), Bit F3	
PORT_IOO_4	CH_7_G0_M1	Digitale Filterstufe AI_15 (LTC1564a), Bit G0	
PORT_IOO_5	CH_7_G1_M1	Digitale Filterstufe AI_15 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IOO_6	CH_7_G2_M1	Digitale Filterstufe AI_15 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_7	CH_7_G3_M1	Digitale Filterstufe AI_15 (LTC1564a), Bit G3	
PORT_IO1_0	CH_6_F0_M1	Digitale Filterstufe AI_14 (LTC1564a), Bit F0	
PORT_IO1_1	CH_6_F1_M1	Digitale Filterstufe AI_14 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO1_2	CH_6_F2_M1	Digitale Filterstufe AI_14 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_3	CH_6_F3_M1	Digitale Filterstufe AI_14 (LTC1564a), Bit F3	
PORT_IO1_4	CH_6_G0_M1	Digitale Filterstufe AI_14 (LTC1564a), Bit G0	
PORT_IO1_5	CH_6_G1_M1	Digitale Filterstufe AI_14 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IO1_6	CH_6_G2_M1	Digitale Filterstufe AI_14 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_7	CH_6_G3_M1	Digitale Filterstufe AI_14 (LTC1564a), Bit G3	
PORT_IO2_0	CH_5_F0_M1	Digitale Filterstufe AI_13 (LTC1564a), Bit F0	
PORT_IO2_1	CH_5_F1_M1	Digitale Filterstufe AI_13 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO2_2	CH_5_F2_M1	Digitale Filterstufe AI_13 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_3	CH_5_F3_M1	Digitale Filterstufe AI_13 (LTC1564a), Bit F3	

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IO2_4	CH_5_G3_M1	Digitale Filterstufe AI_13 (LTC1564a), Bit G3	
PORT_IO2_5	CH_5_G2_M1	Digitale Filterstufe AI_13 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO2_6	CH_5_G1_M1	Digitale Filterstufe AI_13 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_7	CH_5_G0_M1	Digitale Filterstufe AI_13 (LTC1564a), Bit G0	
PORT_IO3_0	ABH_R_A0_M1	8-Kanal Multiplexer Al-Modul 1 rechts (DG408), Bit A0	
PORT_IO3_1	ABH_R_A1_M1	8-Kanal Multiplexer Al-Modul 1 rechts (DG408), Bit A1	Kanal 1 von Al-Modul 1 zur Relaisstufe (Li_INT_M1)
PORT_IO3_2	ABH_R_A2_M1	8-Kanal Multiplexer AI-Modul 1 rechts (DG408), Bit A2	
PORT_IO3_3	ABH_L_A0_M1	8-Kanal Multiplexer Al-Modul 1 links (DG408), Bit A0	
PORT_IO3_4	ABH_L_A1_M1	8-Kanal Multiplexer AI-Modul 1 links (DG408), Bit A1	Kanal 1 von Al-Modul 1 zur Relaisstufe (Re_INT_M1)
PORT_IO3_5	ABH_L_A2_M1	8-Kanal Multiplexer Al-Modul 1 links (DG408), Bit A2	
PORT_IO3_6	reserviert		
PORT_IO3_7	reserviert		
PORT_IO4_0	reserviert		
PORT_IO4_1	reserviert		
PORT_IO4_2	reserviert		
PORT_IO4_3	reserviert		
PORT_IO4_4	reserviert		
PORT_IO4_5	reserviert		
PORT_IO4_6	reserviert		
PORT_IO4_7	reserviert		

4.3.11 Al-Modul 2 (Al_16..20), digitale Filterstufe

I ² C	-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
F	PCA9698	26h	4Ch	Ansteuerung Port 05 mit negativer Logik, Ausgänge als Sink-Treiber konfigurieren; => Register 28h = 00h

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IOO_0	CH_4_F0_M2	Digitale Filterstufe AI_20 (LTC1564a), Bit F0	
PORT_IOO_1	CH_4_F1_M2	Digitale Filterstufe AI_20 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IOO_2	CH_4_F2_M2	Digitale Filterstufe AI_20 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_3	CH_4_F3_M2	Digitale Filterstufe AI_20 (LTC1564a), Bit F3	
PORT_IOO_4	CH_4_G0_M2	Digitale Filterstufe AI_20 (LTC1564a), Bit G0	
PORT_IOO_5	CH_4_G1_M2	Digitale Filterstufe AI_20 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IOO_6	CH_4_G2_M2	Digitale Filterstufe AI_20 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_7	CH_4_G3_M2	Digitale Filterstufe AI_20 (LTC1564a), Bit G3	
PORT_IO1_0	CH_3_F0_M2	Digitale Filterstufe AI_19 (LTC1564a), Bit F0	
PORT_IO1_1	CH_3_F1_M2	Digitale Filterstufe AI_19 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO1_2	CH_3_F2_M2	Digitale Filterstufe AI_19 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_3	CH_3_F3_M2	Digitale Filterstufe AI_19 (LTC1564a), Bit F3	
PORT_IO1_4	CH_3_G0_M2	Digitale Filterstufe AI_19 (LTC1564a), Bit G0	
PORT_IO1_5	CH_3_G1_M2	Digitale Filterstufe AI_19 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IO1_6	CH_3_G2_M2	Digitale Filterstufe AI_19 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_7	CH_3_G3_M2	Digitale Filterstufe AI_19 (LTC1564a), Bit G3	
PORT_IO2_0	CH_0_F0_M2	Digitale Filterstufe AI_16 (LTC1564a), Bit F0	
PORT_IO2_1	CH_0_F1_M2	Digitale Filterstufe AI_16 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO2_2	CH_0_F2_M2	Digitale Filterstufe AI_16 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_3	CH_0_F3_M2	Digitale Filterstufe AI_16 (LTC1564a), Bit F3	

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IO2_4	CH_0_G3_M2	Digitale Filterstufe AI_16 (LTC1564a), Bit G3	
PORT_IO2_5	CH_0_G2_M2	Digitale Filterstufe AI_16 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO2_6	CH_0_G1_M2	Digitale Filterstufe AI_16 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_7	CH_0_G0_M2	Digitale Filterstufe AI_16 (LTC1564a), Bit G0	
PORT_IO3_0	CH_1_F3_M2	Digitale Filterstufe AI_17 (LTC1564a), Bit F3	
PORT_IO3_1	CH_1_F2_M2	Digitale Filterstufe AI_17 (LTC1564a), Bit F2	Grenzfrequenz: 150 kHz
PORT_IO3_2	CH_1_F1_M2	Digitale Filterstufe AI_17 (LTC1564a), Bit F1	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO3_3	CH_1_F0_M2	Digitale Filterstufe AI_17 (LTC1564a), Bit F0	
PORT_IO3_4	CH_1_G3_M2	Digitale Filterstufe AI_17 (LTC1564a), Bit G3	
PORT_IO3_5	CH_1_G2_M2	Digitale Filterstufe AI_17 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO3_6	CH_1_G1_M2	Digitale Filterstufe AI_17 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO3_7	CH_1_G0_M2	Digitale Filterstufe AI_17 (LTC1564a), Bit G0	
PORT_IO4_0	CH_2_F3_M2	Digitale Filterstufe AI_18 (LTC1564a), Bit F3	
PORT_IO4_1	CH_2_F2_M2	Digitale Filterstufe AI_18 (LTC1564a), Bit F2	Grenzfrequenz: 150 kHz
PORT_IO4_2	CH_2_F1_M2	Digitale Filterstufe AI_18 (LTC1564a), Bit F1	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO4_3	CH_2_F0_M2	Digitale Filterstufe AI_18 (LTC1564a), Bit F0	
PORT_IO4_4	CH_2_G3_M2	Digitale Filterstufe AI_18 (LTC1564a), Bit G3	
PORT_IO4_5	CH_2_G2_M2	Digitale Filterstufe AI_18 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO4_6	CH_2_G1_M2	Digitale Filterstufe AI_18 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO4_7	CH_2_G0_M2	Digitale Filterstufe AI_18 (LTC1564a), Bit G0	

4.3.12 Al-Modul 2 (Al_21..23), digitale Filterstufe, 8-Kanal Multiplexer

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCA9698	27h	4Eh	Ansteuerung Port 02 mit negativer Logik, Ausgänge als Sink-Treiber konfigurieren; Ansteuerung Port 3 mit positiver Logik, Ausgänge als Source-Treiber konfigurieren => Register 28h = C0h

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IOO_0	CH_7_F0_M2	Digitale Filterstufe AI_23 (LTC1564a), Bit F0	
PORT_IOO_1	CH_7_F1_M2	Digitale Filterstufe AI_23 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IOO_2	CH_7_F2_M2	Digitale Filterstufe AI_23 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_3	CH_7_F3_M2	Digitale Filterstufe AI_23 (LTC1564a), Bit F3	
PORT_IOO_4	CH_7_G0_M2	Digitale Filterstufe AI_23 (LTC1564a), Bit G0	
PORT_IO0_5	CH_7_G1_M2	Digitale Filterstufe AI_23 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IOO_6	CH_7_G2_M2	Digitale Filterstufe AI_23 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_7	CH_7_G3_M2	Digitale Filterstufe AI_23 (LTC1564a), Bit G3	
PORT_IO1_0	CH_6_F0_M2	Digitale Filterstufe AI_22 (LTC1564a), Bit F0	
PORT_IO1_1	CH_6_F1_M2	Digitale Filterstufe AI_22 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO1_2	CH_6_F2_M2	Digitale Filterstufe AI_22 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_3	CH_6_F3_M2	Digitale Filterstufe AI_22 (LTC1564a), Bit F3	
PORT_IO1_4	CH_6_G0_M2	Digitale Filterstufe AI_22 (LTC1564a), Bit G0	
PORT_IO1_5	CH_6_G1_M2	Digitale Filterstufe AI_22 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IO1_6	CH_6_G2_M2	Digitale Filterstufe AI_22 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_7	CH_6_G3_M2	Digitale Filterstufe AI_22 (LTC1564a), Bit G3	
PORT_IO2_0	CH_5_F0_M2	Digitale Filterstufe AI_21 (LTC1564a), Bit F0	
PORT_IO2_1	CH_5_F1_M2	Digitale Filterstufe AI_21 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO2_2	CH_5_F2_M2	Digitale Filterstufe AI_21 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_3	CH_5_F3_M2	Digitale Filterstufe AI_21 (LTC1564a), Bit F3	

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IO2_4	CH_5_G3_M2	Digitale Filterstufe AI_21 (LTC1564a), Bit G3	
PORT_IO2_5	CH_5_G2_M2	Digitale Filterstufe AI_21 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO2_6	CH_5_G1_M2	Digitale Filterstufe AI_21 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_7	CH_5_G0_M2	Digitale Filterstufe AI_21 (LTC1564a), Bit G0	
PORT_IO3_0	ABH_R_A0_M2	8-Kanal Multiplexer Al-Modul 2 rechts (DG408), Bit A0	
PORT_IO3_1	ABH_R_A1_M2	8-Kanal Multiplexer Al-Modul 2 rechts (DG408), Bit A1	Kanal 1 von Al-Modul 2 zur Relaisstufe (Li_INT_M2)
PORT_IO3_2	ABH_R_A2_M2	8-Kanal Multiplexer Al-Modul 2 rechts (DG408), Bit A2	
PORT_IO3_3	ABH_L_A0_M2	8-Kanal Multiplexer Al-Modul 2 links (DG408), Bit A0	
PORT_IO3_4	ABH_L_A1_M2	8-Kanal Multiplexer Al-Modul 2 links (DG408), Bit A1	Kanal 1 von Al-Modul 2 zur Relaisstufe (Re_INT_M2)
PORT_IO3_5	ABH_L_A2_M2	8-Kanal Multiplexer AI-Modul 2 links (DG408), Bit A2	
PORT_IO3_6	reserviert		
PORT_IO3_7	reserviert		
	I	T	
PORT_IO4_0	reserviert		
PORT_IO4_1	reserviert		
PORT_IO4_2	reserviert		
PORT_IO4_3	reserviert		
PORT_IO4_4	reserviert		
PORT_IO4_5	reserviert		
PORT_IO4_6	reserviert		
PORT_IO4_7	reserviert		

4.3.13 Al-Modul 3 (Al_24..28), digitale Filterstufe

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCA9698	10h		Ansteuerung Port 05 mit negativer Logik, Ausgänge als Sink-Treiber konfigurieren; => Register 28h = 00h

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IOO_0	CH_4_F0_M3	Digitale Filterstufe AI_28 (LTC1564a), Bit F0	
PORT_IOO_1	CH_4_F1_M3	Digitale Filterstufe AI_28 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IOO_2	CH_4_F2_M3	Digitale Filterstufe AI_28 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_3	CH_4_F3_M3	Digitale Filterstufe AI_28 (LTC1564a), Bit F3	
PORT_IOO_4	CH_4_G0_M3	Digitale Filterstufe AI_28 (LTC1564a), Bit G0	
PORT_IOO_5	CH_4_G1_M3	Digitale Filterstufe AI_28 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IOO_6	CH_4_G2_M3	Digitale Filterstufe AI_28 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_7	CH_4_G3_M3	Digitale Filterstufe AI_28 (LTC1564a), Bit G3	
PORT_IO1_0	CH_3_F0_M3	Digitale Filterstufe AI_27 (LTC1564a), Bit F0	
PORT_IO1_1	CH_3_F1_M3	Digitale Filterstufe AI_27 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO1_2	CH_3_F2_M3	Digitale Filterstufe AI_27 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_3	CH_3_F3_M3	Digitale Filterstufe AI_27 (LTC1564a), Bit F3	
PORT_IO1_4	CH_3_G0_M3	Digitale Filterstufe AI_27 (LTC1564a), Bit G0	
PORT_IO1_5	CH_3_G1_M3	Digitale Filterstufe AI_27 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IO1_6	CH_3_G2_M3	Digitale Filterstufe AI_27 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_7	CH_3_G3_M3	Digitale Filterstufe AI_27 (LTC1564a), Bit G3	
PORT_IO2_0	CH_0_F0_M3	Digitale Filterstufe AI_24 (LTC1564a), Bit F0	
PORT_IO2_1	CH_0_F1_M3	Digitale Filterstufe AI_24 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO2_2	CH_0_F2_M3	Digitale Filterstufe AI_24 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_3	CH_0_F3_M3	Digitale Filterstufe AI_24 (LTC1564a), Bit F3	

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IO2_4	CH_0_G3_M3	Digitale Filterstufe AI_24 (LTC1564a), Bit G3	
PORT_IO2_5	CH_0_G2_M3	Digitale Filterstufe AI_24 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO2_6	CH_0_G1_M3	Digitale Filterstufe AI_24 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_7	CH_0_G0_M3	Digitale Filterstufe AI_24 (LTC1564a), Bit G0	
PORT_IO3_0	CH_1_F3_M3	Digitale Filterstufe AI_25 (LTC1564a), Bit F3	
PORT_IO3_1	CH_1_F2_M3	Digitale Filterstufe AI_25 (LTC1564a), Bit F2	Grenzfrequenz: 150 kHz
PORT_IO3_2	CH_1_F1_M3	Digitale Filterstufe AI_25 (LTC1564a), Bit F1	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO3_3	CH_1_F0_M3	Digitale Filterstufe AI_25 (LTC1564a), Bit F0	
PORT_IO3_4	CH_1_G3_M3	Digitale Filterstufe AI_25 (LTC1564a), Bit G3	
PORT_IO3_5	CH_1_G2_M3	Digitale Filterstufe AI_25 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO3_6	CH_1_G1_M3	Digitale Filterstufe AI_25 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO3_7	CH_1_G0_M3	Digitale Filterstufe AI_25 (LTC1564a), Bit G0	
PORT_IO4_0	CH_2_F3_M3	Digitale Filterstufe AI_26 (LTC1564a), Bit F3	
PORT_IO4_1	CH_2_F2_M3	Digitale Filterstufe AI_26 (LTC1564a), Bit F2	Grenzfrequenz: 150 kHz
PORT_IO4_2	CH_2_F1_M3	Digitale Filterstufe AI_26 (LTC1564a), Bit F1	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO4_3	CH_2_F0_M3	Digitale Filterstufe AI_26 (LTC1564a), Bit F0	
PORT_IO4_4	CH_2_G3_M3	Digitale Filterstufe AI_26 (LTC1564a), Bit G3	
PORT_IO4_5	CH_2_G2_M3	Digitale Filterstufe AI_26 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO4_6	CH_2_G1_M3	Digitale Filterstufe AI_26 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO4_7	CH_2_G0_M3	Digitale Filterstufe AI_26 (LTC1564a), Bit G0	

4.3.14 Al-Modul 3 (Al_29..31), digitale Filterstufe, 8-Kanal Multiplexer

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCA9698	11h	22h	Ansteuerung Port 02 mit negativer Logik, Ausgänge als Sink-Treiber konfigurieren; Ansteuerung Port 3 mit positiver Logik, Ausgänge als Source-Treiber konfigurieren => Register 28h = C0h

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IOO_0	CH_7_F0_M3	Digitale Filterstufe AI_31 (LTC1564a), Bit F0	
PORT_IOO_1	CH_7_F1_M3	Digitale Filterstufe AI_31 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IOO_2	CH_7_F2_M3	Digitale Filterstufe AI_31 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_3	CH_7_F3_M3	Digitale Filterstufe AI_31 (LTC1564a), Bit F3	
PORT_IOO_4	CH_7_G0_M3	Digitale Filterstufe AI_31 (LTC1564a), Bit G0	
PORT_IO0_5	CH_7_G1_M3	Digitale Filterstufe AI_31 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IOO_6	CH_7_G2_M3	Digitale Filterstufe AI_31 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IOO_7	CH_7_G3_M3	Digitale Filterstufe AI_31 (LTC1564a), Bit G3	
PORT_IO1_0	CH_6_F0_M3	Digitale Filterstufe AI_30 (LTC1564a), Bit F0	
PORT_IO1_1	CH_6_F1_M3	Digitale Filterstufe AI_30 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO1_2	CH_6_F2_M3	Digitale Filterstufe AI_30 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_3	CH_6_F3_M3	Digitale Filterstufe AI_30 (LTC1564a), Bit F3	
PORT_IO1_4	CH_6_G0_M3	Digitale Filterstufe AI_30 (LTC1564a), Bit G0	
PORT_IO1_5	CH_6_G1_M3	Digitale Filterstufe AI_30 (LTC1564a), Bit G1	Verstärkungsfaktor = 16
PORT_IO1_6	CH_6_G2_M3	Digitale Filterstufe AI_30 (LTC1564a), Bit G2	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO1_7	CH_6_G3_M3	Digitale Filterstufe AI_30 (LTC1564a), Bit G3	
PORT_IO2_0	CH_5_F0_M3	Digitale Filterstufe AI_29 (LTC1564a), Bit F0	
PORT_IO2_1	CH_5_F1_M3	Digitale Filterstufe AI_29 (LTC1564a), Bit F1	Grenzfrequenz: 150 kHz
PORT_IO2_2	CH_5_F2_M3	Digitale Filterstufe AI_29 (LTC1564a), Bit F2	(Binär-Codierung F30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_3	CH_5_F3_M3	Digitale Filterstufe AI_29 (LTC1564a), Bit F3	

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IO2_4	CH_5_G3_M3	Digitale Filterstufe AI_29 (LTC1564a), Bit G3	
PORT_IO2_5	CH_5_G2_M3	Digitale Filterstufe AI_29 (LTC1564a), Bit G2	Verstärkungsfaktor = 16
PORT_IO2_6	CH_5_G1_M3	Digitale Filterstufe AI_29 (LTC1564a), Bit G1	(Binär-Codierung G30 siehe Kap. 4.2 auf Seite 38)
PORT_IO2_7	CH_5_G0_M3	Digitale Filterstufe AI_29 (LTC1564a), Bit G0	
PORT_IO3_0	ABH_R_A0_M3	8-Kanal Multiplexer Al-Modul 3 rechts (DG408), Bit A0	
PORT_IO3_1	ABH_R_A1_M3	8-Kanal Multiplexer Al-Modul 3 rechts (DG408), Bit A1	Kanal 1 von Al-Modul 3 zur Relaisstufe (Li_INT_M3)
PORT_IO3_2	ABH_R_A2_M3	8-Kanal Multiplexer Al-Modul 3 rechts (DG408), Bit A2	
PORT_IO3_3	ABH_L_A0_M3	8-Kanal Multiplexer AI-Modul 3 links (DG408), Bit A0	
PORT_IO3_4	ABH_L_A1_M3	8-Kanal Multiplexer Al-Modul 3 links (DG408), Bit A1	Kanal 1 von Al-Modul 3 zur Relaisstufe (Re_INT_M3)
PORT_IO3_5	ABH_L_A2_M3	8-Kanal Multiplexer AI-Modul 3 links (DG408), Bit A2	
PORT_IO3_6	reserviert		
PORT_IO3_7	reserviert		
PORT_IO4_0	reserviert		
PORT_IO4_1	reserviert		
PORT_IO4_2	reserviert		
PORT_IO4_3	reserviert		
PORT_IO4_4	reserviert		
PORT_IO4_5	reserviert		
PORT_IO4_6	reserviert		
PORT_IO4_7	reserviert		

4.3.15 4-Kanal I²C-Master/Slave-Switch

	I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
ı	PCA9546A	70h	E0h	

Port PCA9546A	Signal im Schaltplan	Beschreibung	Default
SCL	SCL_MASTER	SCL von HDMI-Steckverbin- der (STB18) kommend	-
SDA	SDA_MASTER	SDA von HDMI-Steckverbin- der (STB18) kommend	-
SC0	SCL_BASE	SCL-Slave 0 für Baseboard	SC0 deaktiviert
SD0	SDA_BASE	SDA-Slave 0 für Baseboard	SD0 deaktiviert
SC1	SCL_ASTB3	SCL-Slave 1 für Aufsteck- modul 3 (via JB5)	SC1 deaktiviert
SD1	SDA_ASTB3	SDA-Slave 1 für Aufsteck- modul 3 (via JB5)	SD1 deaktiviert
SC2	SCL_ASTB2	SCL-Slave 2 für Aufsteck- modul 2 (via JB4)	SC2 deaktiviert
SD2	SDA_ASTB2	SDA-Slave 2 für Aufsteck- modul 2 (via JB4)	SD2 deaktiviert
SC3	SCL_ASTB1	SCL-Slave 3 für Aufsteck- modul 1 (via JB3)	SC3 deaktiviert
SD3	SDA_ASTB1	SDA-Slave 3 für Aufsteck- modul 1 (via JB3)	SD3 deaktiviert

4.3.16 I²C-Temperaturüberwachung mit Schwellwerteinstellung und Alarmausgang

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
LM75a	47h	9Eh	

Signal im Schaltplan	Beschreibung	Default
SCL_BASE	SCL-Signal für I ² C-Temperatursensor.	ı
SDA_BASE	SDA-Signal für I ² C-Temperatursensor.	-

4.3.17 I²C-EEPROM für anwenderspezifische Daten

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
M24256-BR	50h	A0h	

Signal im Schaltplan	Beschreibung	Default
SCL_BASE	SCL-Signal für EEPROM	_
SDA_BASE	SDA-Signal für EEPROM	_

4.4 Powerboard (ADQ-SCU-PB)

4.4.1 Relais-Ansteuerung (U1..6), 2 x Hochstrom-Relais, 4 x Standard-Relais

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCF8574A	39h	72h	Ansteuerung der Relais mit negativer Logik (via ULN2803)

Port PCF8574A	Signal im Schaltplan	Beschreibung	Default
PORT_P0	Rel_U1	Hochstrom-Relais (12 V/100 A), Kanal U1	Relais geöffnet
PORT_P1	Rel_U2	Hochstrom-Relais (12 V/100 A), Kanal U2	Relais geöffnet
PORT_P2	Rel_U3	Standard-Relais 1 x Ein (30 V/5 A), Kanal U3	Relais geöffnet
PORT_P3	Rel_U4	Standard-Relais 1 x Ein (30 V/5 A), Kanal U4	Relais geöffnet
PORT_P4	Rel_U5	Standard-Relais 1 x Ein (30 V/5 A), Kanal U5	Relais geöffnet
PORT_P5	Rel_U6	Standard-Relais 1 x Ein (30 V/5 A), Kanal U6	Relais geöffnet
PORT_P6	reserviert		
PORT_P7	reserviert		

4.4.2 4-Kanal-Leistungsmessung (U3..6)

Kanal U3:

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
LTC2945	6Fh	DEh	Messwerte von Kanal U3 lesen

Port LTC2945	Signal im Schaltplan	Beschreibung	Default
SCL	SCL_BASE (SCL_5V)	SCL für LTC2945, Kanal U3	-
SDAI/SDAO	SDA_BASE (SDA_5V)	SDA für LTC2945, Kanal U3	-

Kanal U4:

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
LTC2945	6Ch	D8h	Messwerte von Kanal U4 lesen

Port LTC2945	Signal im Schaltplan	Beschreibung	Default
SCL	SCL_BASE (SCL_5V)	SCL für LTC2945, Kanal U4	-
SDAI/SDAO	SDA_BASE (SDA_5V)	SDA für LTC2945, Kanal U4	-

Kanal U5:

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
LTC2945	67h	CEh	Messwerte von Kanal U5 lesen

Port LTC2945	Signal im Schaltplan	Beschreibung	Default
SCL	SCL_BASE (SCL_5V)	SCL für LTC2945, Kanal U5	-
SDAI/SDAO	SDA_BASE (SDA_5V)	SDA für LTC2945, Kanal U5	-

Kanal U6:

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
LTC2945	69h	D2h	Messwerte von Kanal U6 lesen

Port LTC2945	Signal im Schaltplan	Beschreibung	Default
SCL	SCL_BASE (SCL_5V)	SCL für LTC2945, Kanal U6	-
SDAI/SDAO	SDA_BASE (SDA_5V)	SDA für LTC2945, Kanal U6	-

4.5 Relaisboard (ADQ-SCU-RB)

4.5.1 Relais-Aufsteckboard mit 16 Wechsler-Relais (SPDT), 24 TTL-I/Os

I ² C-Baustein	I ² C-Adresse (7-Bit)	I ² C-Adresse (8-Bit)	Bemerkung
PCA9698	14h	28h	Port 02 sind Eingangsports (positive Logik) Ansteuerung Port 34 mit positiver Logik (via ULN2803), Ausgänge als Source-Treiber konfigurieren => Register 28h = 11h (Default)

Port PCA9698	Signal im Schaltplan	Beschreibung	Default
PORT_IOO_0	100		Eingang
PORT_IO0_1	101		Eingang
PORT_IO0_2	102	TTL-I/Os direkt mit STR5 verbunden.	Eingang
PORT_IO0_3	103	Jeder TTL-I/O kann separat als Ein-	Eingang
PORT_IO0_4	104	oder Ausgang programmiert werden, Ausgänge können wahlweise für	Eingang
PORT_IO0_5	105	Sink- oder Source-Betrieb konfiguriert werden	Eingang
PORT_IO0_6	106		Eingang
PORT_IO0_7	107		Eingang
	1	ĭ	
PORT_IO1_0	108		Eingang
PORT_IO1_1	109		Eingang
PORT_IO1_2	IO10	TTL-I/Os direkt mit STR6 verbunden.	Eingang
PORT_IO1_3	IO11	Jeder TTL-I/O kann separat als Ein- oder Ausgang programmiert werden,	Eingang
PORT_IO1_4	IO12	Ausgänge können wahlweise für	Eingang
PORT_IO1_5	IO13	Sink- oder Source-Betrieb konfiguriert werden	Eingang
PORT_IO1_6	IO14		Eingang
PORT_IO1_7	1015		Eingang
	1	1	
PORT_IO2_0	1016		Eingang
PORT_IO2_1	1017		Eingang
PORT_IO2_2	IO18	TTL-I/Os direkt mit STR7 verbunden.	Eingang
PORT_IO2_3	1019	Jeder TTL-I/O kann separat als Ein- oder Ausgang programmiert werden,	Eingang
PORT_IO2_4	1020	Ausgänge können wahlweise für Sink- oder Source-Betrieb konfiguriert werden	Eingang
PORT_IO2_5	IO21		Eingang
PORT_IO2_6	1022		Eingang
PORT_IO2_7	1023		Eingang

Port PCA9698	Signal im Schaltplan	Beschreibung	Default		
PORT_IO3_0	Rel1	Wechsler-Relais 30 V/6 A (SPDT), siehe STR1	COM mit NC verbunden		
PORT_IO3_1	Rel2	Wechsler-Relais 30 V/6 A (SPDT), siehe STR1	COM mit NC verbunden		
PORT_IO3_2	Rel3	Wechsler-Relais 30 V/6 A (SPDT), siehe STR1	COM mit NC verbunden		
PORT_IO3_3	Rel4	Wechsler-Relais 30 V/6 A (SPDT), siehe STR1	COM mit NC verbunden		
PORT_IO3_4	Rel5	Wechsler-Relais 30 V/6 A (SPDT), siehe STR2	COM mit NC verbunden		
PORT_IO3_5	Rel6	Wechsler-Relais 30 V/6 A (SPDT), siehe STR2	COM mit NC verbunden		
PORT_IO3_6	Rel7	Wechsler-Relais 30 V/6 A (SPDT), siehe STR2	COM mit NC verbunden		
PORT_IO3_7	Rel8	Wechsler-Relais 30 V/6 A (SPDT), siehe STR2	COM mit NC verbunden		
PORT_IO4_0	Rel9	Wechsler-Relais 30 V/6 A (SPDT), siehe STR3	COM mit NC verbunden		
PORT_IO4_1	Rel10	Wechsler-Relais 30 V/6 A (SPDT), siehe STR3	COM mit NC verbunden		
PORT_IO4_2	Rel11	Wechsler-Relais 30 V/6 A (SPDT), siehe STR3	COM mit NC verbunden		
PORT_IO4_3	Rel12	Wechsler-Relais 30 V/6 A (SPDT), siehe STR3	COM mit NC verbunden		
PORT_IO4_4	Rel13	Wechsler-Relais 30 V/6 A (SPDT), siehe STR4	COM mit NC verbunden		
PORT_IO4_5	Rel14	Wechsler-Relais 30 V/6 A (SPDT), siehe STR4	COM mit NC verbunden		
PORT_IO4_6	Rel15	Wechsler-Relais 30 V/6 A (SPDT), siehe STR4	COM mit NC verbunden		
PORT_IO4_7	Rel16	Wechsler-Relais 30 V/6 A (SPDT), siehe STR4	COM mit NC verbunden		

5. Spezifikationen

Bedingungen: $T_A = 25$ °C sofern nicht anders angegeben; Warmlaufzeit: 30 Minuten.

Allgemein

Element	Bedingung	Spezifikation
Steuerung und Signal- Verarbeitung	empfohlen	ADQ-344 für analoge und digitale Ein-/Ausgabe, sowie Steuerung via I ² C-Bus
Versorgung	STB16/17	+5V/+12 V-Versorgung über Molex-Steckverbinder von PC- Netzteil für Spannungsversorgung von ADQ-SCU-BB/PB/RB mit ±5V, ±15V, ±24V
Hilfsspannungen (schaltbar)	STB11/14	Spannungszufuhr vom PC-Netzteil über vier Molex-Steckver- binder. Via Relais geschaltet zu STB15
Ruhestromaufnahme	ADQ-SCU-BB/PB/RB kein Relais angezogen	+5V: max. 75mA +12V: max. 1,2 A
Stromaufnahme	ADQ-SCU-BB alle Relais angezogen	+5 V: max. 60 mA +12 V: max. 2,6 A
	ADQ-SCU-PB alle Relais angezogen	+5 V: max. 60 mA +12 V: max. 280 mA
	ADQ-SCU-RB alle Relais angezogen	+5 V: max. 60 mA +12 V: max. 350 mA
Sicherungen für schalt-	+5 V (F2, F4, F6, F8)	4A (selbstheilend, Typ: Polyfuse)
bare Hilfsspannungen via STB15	+12 V (F1, F3, F5, F7)	4A (selbstheilend, Typ: Polyfuse)
Temperaturbereich	Betrieb	060 °C (Standard)
Luftfeuchtigkeit	Betrieb	20%55% (nicht kondensierend)
Abmessungen	ADQ-SCU-BB	330 x 250 x 40 mm
(B x T x H)	ADQ-SCU-PB	135 x 125 x 65 mm
	ADQ-SCU-RB	135 x 125 x 19 mm
	Gesamthöhe	80 mm
Hersteller-Garantie		36 Monate

Element	Bedingung	Spezifikation
Anschlüsse	STB14* STB15*	20-pol. Molex Micro-Fit Stecker 43045-2026 Gegenstecker-Gehäuse: 43025-2010
	STB5*	16-pol. Molex Micro-Fit Stecker 43045-1626 Gegenstecker-Gehäuse: 43025-1610
	STB610*	10-pol. Molex Micro-Fit Stecker 43045-1026 Gegenstecker-Gehäuse: 43025-1010
	STB1114 STB1617	4-pol. Molex Stromversorgungsstecker der 8981-Serie (180°)
	STB18	HDMI-Steckverbinder, Typ HEC
	STB19	3-pin Stecker, Typ: Phoenix Contact MCV 1,5/ 3-G-3,5 (Phoenix BestNr. 1843237), Gegenstecker mit Federklemmen: Phoenix Contact FMC 1,5/ 3-STF-3,5 (Phoenix BestNr. 1966101)
	STB2021	BNC-Buchsen
	STB3061, STB7073	MMCX-Buchsen
	STB_VA, STB_VB	Zwei 68-pol. VHDCI-Buchsen
	STR14*	12-pol. Molex Micro-Fit Stecker 43045-1226 Gegenstecker-Gehäuse: 43025-1210
	STR57*	10-pol. Molex Micro-Fit Stecker 43045-1026 Gegenstecker-Gehäuse: 43025-1010
	ST18	Einpolige Hochstrom-Steckverbinder vom Typ: Würth Electronic REDCUBE Direct Plug Terminal WP-PLUG (4 x schwarz, 4 x rot)
	ST9, ST12	4-pol. Molex Micro-Fit Stecker 43045-0426 Gegenstecker-Gehäuse: 43025-0410
	ST10, ST11	8-pol. Molex Micro-Fit Stecker 43045-0826 Gegenstecker-Gehäuse: 43025-0810
	JB12, JR2_S	10-pol. Stiftsteckerleiste (zweireihig)
	JB35	5-pol. Stiftsteckerleiste (einreihig)

^{*}Siehe auch Kap. "3.3 Steckverbindertypen im Überblick" auf Seite 17.

Analog-Eingänge ADQ-SCU-BB

Sofern hier nicht anderweitig spezifiziert gelten die Spezifikationen der ADQ-344. Grundsätzlich sollte ein Abgleich mit angeschlossener Feldverdrahtung in Verbindung mit der ADQ-344 erfolgen.

Element	Bedingung	Spezifikation
Kanäle		32 single-ended Analog-Eingänge (4 Al-Module)
Auflösung		18 bit A/D-Wandler-Auflösung, der Ausgangspegel zur ADQ- 344 ist normiert auf ±5,12 V
Eingangsimpedanz	mit Dämpfung	6kΩ 1,6pF
	ohne Dämpfung	1 MΩ 1,6 pF
Eingangskopplung		AC/DC (programmierbar)
Eingangsdämpfung		0 dB/-35,9185 dB (programmierbar)
Digitale Filterstufe	LTC1564	0150 kHz in Schritten von 10 kHz programmierbar; 100 dB Dämpfung bei 2,5-facher Grenzfrequenz
Verstärkerstufe	LTC1564	Faktor 116 programmierbar (entspricht 0 dB24,1 dB)
Verstärkerstufe	LTC1469	+16 dB (fix)
Sinnvolle Eingangs-	D = 0 dB, V = 4	0(203 mV - 1 LSB), 1 LSB = 0,8 μV
spannungsbereiche	D = 0 dB, V = 2	0(406 mV - 1 LSB), 1 LSB = 1,5 μV
	D = 0 dB, V = 1	0(812 mV - 1 LSB), 1 LSB = 3 μV
	D = -36 dB, V = 4	0(12,8 V - 1 LSB), 1 LSB = 0,05 mV
	D = -36 dB, V = 2	0(25,6 V - 1 LSB), 1 LSB = 0,1 mV
	D = -36 dB, V = 1	0(51,2 V - 1 LSB), 1 LSB = 0,2 mV
Anstiegszeit	LTC1167	typ. >1,2 V/µs
	LTC1468	typ. >22 V/μs
Temperaturdrift	LTC1167	±4µV/°C
	LTC1564	keine Herstellerangabe
	LTC1468	±2 µV/°C
Kleinsignal-Relais	Details siehe separate Tabelle	Typ: FTR-B3CA()Z, bis zu 5 Relais im Al-Signalpfad
Triggereingänge		4 externe Trigger-Eingänge via STB8 (einer je Al-Modul)
Massebezug	Analog-Eingänge	GND_AI
	AI-Trigger-Eingänge	TRIG_AI_GND

Genauigkeit des Gesamtaufbaus aus ADQ-SCU Signalkonditionierungseinheit und ADQ-344 Multifunktions-Mess- und Steuerkarte:

Bevor man mit dem Abgleich des Al- und AO-Teils beginnt, sollte das Messsystem min. 30 Minuten warmlaufen. Folgende Messmittel wurden für die Messungen verwendet:

- Referenzspannungsquelle: Knick J152
- 51/2-stelliges Multimeter: Siglent SDM3055
- ADQ-344 mit folgenden Einstellungen: Abtastrate: 200 kHz, 5.000.000 Werte pro Kanal, Eingangsbereich: ±5,12 V. Die ADQ-344 ist abgeglichen.

Eingangsspg.	DC/AC	Dämpfung	Anpassung	Verstärker/Filter	Verstärkung	Fehler
±10mV	DC	0 dB	G=1	G=16/20kHz	16 dB	±0,0103%
±90mV	DC	0 dB	G=1	G=8/20kHz	16 dB	±0,0072%
±200mV	DC	0 dB	G=1	G=4/20kHz	16 dB	±0,0065%
±500mV	DC	0 dB	G=1	G=1/20kHz	16 dB	±0,0065%
±1V	DC	-36 dB	G=1	G=8/20kHz	16 dB	±0,15%
±10V	DC	-36 dB	G=1	G=4/20kHz	16 dB	±0,08%
±19V	DC	-36 dB	G=1	G=1/20kHz	16 dB	±0,021%

Audio-Monitoring-Stufe ADQ-SCU-BB

Element	Bedingung	Spezifikation
Kanäle		1 x Stereo-Audio-Ausgang zum Anschluss eines Kopfhörers
Digitale Filterstufe	LTC1564	0150 kHz in Schritten von 10 kHz programmierbar; 100 dB Dämpfung bei 2,5-facher Grenzfrequenz
Verstärkerstufe	LTC1564	Faktor 116 programmierbar (entspricht 0 dB24,1 dB)
Ausgangsverstärker	MAX9723	0 dB24,1 dB (programmierbar)
Anschluss	STB19	3-pol. Grundleiste, Phoenix MCV 1,5/ 3-GF-3,5; BestNr.: 1843237 Geeigneter Gegenstecker mit Federklemmen: Phoenix FMC 1,5/ 3-STF-3,5; BestNr.: 1966101

Analog-Ausgänge ADQ-SCU-BB

Sofern hier nicht anderweitig spezifiziert gelten die Spezifikationen der ADQ-344. Grundsätzlich sollte mit angeschlossener Feldverdrahtung ein Abgleich in Verbindung mit der ADQ-344 erfolgen.

Element	Bedingung	Spezifikation
Anzahl Kanäle	AO_AG±	8 single-ended/diff. Spannungsausgänge; je 2 Kanäle (AO_x/y±) werden vom gleichen D/A-Kanal der ADQ- 344 gespeist
Ausgangsspannungsbereich		-20,48V(+20,48V - 1 LSB)
Auflösung		16 bit (1 LSB = 626 μV)
Offset-Fehler	nicht abgeglichen	max. 1,25 mV
Ausgangsstrom		max. ±10 mA je Kanal
Grenzfrequenz		1 MHz (-3 dB)
Anstiegszeit		min. 18 V/μs
Ausgangsimpedanz	abgeschaltet	>10 MΩ
Gesamtgenauigkeit		2 LSB = 1,25 mV
Kanalabschaltung		Durch geeignete Programmierung ist eine Abschaltung des Ausgangskanals möglich
Überlastschutz		Bei einer Überhitzung des Ausgangsverstärkers erfolgt automatisch eine Abschaltung des Ausgangs
Triggereingänge		4 externe Trigger-Eingänge via STB8 (einer je Kanalpaar)
Massebezug	Analog-Ausgänge	GND_AO
	AO-Trigger-Eingänge	TRIG_AO_GND

^{*} Die tatsächlich erreichbare Ausgaberate hängt stark von der Leistungsfähigkeit Ihres Rechners, der Anzahl der eingebauten Karten und der Anzahl der verwendeten Kanäle ab.

Kleinsignal-Relais für AI- und AO-Teil

Element	Bedingung	Spezifikation
Тур		FTR-B3CA()Z Standard
Anzahl	AI-Teil	bis zu 5 Relais im Al-Signalpfad
	AO-Teil	2 Relais im AO-Signalpfad
Kontaktart		2-pol. Wechsler (DPDT)
Kontaktmaterial		Silber/Nickel mit Goldauflage
Kontaktwiderstand	1A/6VDC	max. 75 mΩ bei 1 A/6 VDC
Schaltzeit	Ansprechzeit	max. 3 ms
	Rückfallzeit	max. 3 ms
Schaltzyklen	mechanisch	min. 50.000.000

Relais für Hilfsspannungen auf ADQ-SCU-BB

Element	Bedingung	Spezifikation
Anzahl/Typ		8 Wechsler Relais (SPDT), Typ: Finder Serie 34
Kontaktmaterial		Silber/Nickel
Schaltzeit	Ansprechzeit	max. 5 ms
	Rückfallzeit	max. 3 ms
Schaltzyklen	mechanisch	min. 10.000.000
Schaltstrom DC1		max. 6 A / 30 VDC (wird per Polyfuse auf 4 A begrenzt)
Anschluss	Eingang	STB1114
	Ausgang	STB15

Isolierte Digital-Eingänge via ADQ-SCU-BB

Sofern hier nicht anderweitig spezifiziert gelten die Spezifikationen der ADQ-344.

Element	Bedingung	Spezifikation
Anzahl	zur ADQ-344	1 x 8 bit Digital-Eingangsports via STB6
Тур		Isolierte Digital-Eingänge (unidirektional) mit Schmitt-Trig- ger-Charakteristik gemäß IEC 61131-2 (Typ 1)
Externe Versorgung	V_EXT_DI	1535 VDC, typ. 24 VDC für Steuerungstechnik
Massebezug		GND_DI

Isolierte Digital-Ausgänge via ADQ-SCU-BB

Sofern hier nicht anderweitig spezifiziert gelten die Spezifikationen der ADQ-344.

Element	Bedingung	Spezifikation
Anzahl	von ADQ-344	1 x 8 bit Digital-Ausgangsports via STB7
Тур		Isolierte Digital-Ausgänge (unidirektional) gemäß IEC 61131-2 (Typ 1)
Externe Versorgung	V_EXT_DO	1135 VDC; typ. 24 VDC für Steuerungstechnik
Massebezug		GND_DO

Relaisboard ADQ-SCU-RB

Element	Bedingung	Spezifikation
TTL-I/Os	PCA9698	3 x 8 bit Ports (bidirektional, Richtung je 8 bit Port program- mierbar)
	Eingänge	Eingänge invertierbar
	Ausgänge	Ausgänge als Sink- oder Source-Treiber programmierbar - Source-Betrieb max. 10 mA - Sink-Betrieb max. 25 mA
	Anschluss	STR57
Relais	Anzahl/Typ	8 Wechsler Relais (SPDT), Typ: Finder Serie 34
	Kontaktmaterial	Silber/Nickel
	Schaltzeit	Ansprechzeit max. 5 ms
		Rückfallzeit max. 3 ms
	Schaltzyklen	min. 10.000.000 (mechanisch)
	Schaltstrom DC1	max. 6 A bei 30 VDC
	Anschluss	Alle Relaiskontakte (NO/NC/COM) sind auf die Stecker STR14 geführt
	Statusanzeige	16 blaue LEDs
Steuerung	PCA9698	I ² C-gesteuert
Massebezug		GND_PC

Powerboard ADQ-SCU-PB

Element	Bedingung	Spezifikation
TTL-I/Os	PCA9698	3 x 8 bit Ports (bidirektional, Richtung je 8 bit Port program- mierbar)
	Eingänge	Eingänge invertierbar
	Ausgänge	Ausgänge als Sink- oder Source-Treiber programmierbar - Source-Betrieb max. 10 mA - Sink-Betrieb max. 25 mA
	Anschluss	STR57
Hochstrom-Relais	Anzahl/Typ	2 Schließer-Relais (SPST), Typ: Finder Serie 67 (Power-Relais)
	Kontaktmaterial	AgSnO ₂
	Schaltzeit	Ansprechzeit max. 25 ms
		Rückfallzeit max. 5 ms
	Schaltzyklen	min. 1.000.000 (mechanisch)
	Schaltstrom DC1	Je Relais 2 Schließkontakte parallel schaltend: max. 2 x 50 A/ 24 VDC
	Anschluss	Einpolige Hochstrom-Steckverbinder vom Typ: Würth Electro- nic REDCUBE Direct Plug Terminal WP-PLUG
	Relais 1 Schaltpfad	ST1 auf ST5 (Masse durchgeschleift von ST2 auf ST6)
	Relais 2 Schaltpfad	ST4 auf ST8 (Masse durchgeschleift von ST3 auf ST7)
	Sense-Leitungen	Signal am Relaiseingang (U1_IN/U2_IN) kann via ST9 gemessen werden
	Statusanzeige	2 blaue LEDs
Standard-Relais	Anzahl/Typ	4 Schließer-Relais (SPST), Typ: Finder Serie 34
	Kontaktmaterial	Silber/Nickel
	Schaltzeit	Ansprechzeit max. 5 ms
		Rückfallzeit max. 3 ms
	Schaltzyklen	min. 10.000.000 (mechanisch)
	Schaltstrom DC1	max. 6 A / 30 VDC, hier max. 5 A aufgrund Maximalstrom der Leistungsmessung via LTC2945
	Anschluss	Eingang (U_IN) via ST10, Ausgänge (U36_OUT) via ST11
	Sense-Leitung	Signal am Relaiseingang (U_IN) kann via ST12 gemessen werden
	Statusanzeige	4 blaue LEDs
Leistungsmessung	Kanäle	4 Kanäle U36
	Strommessung	20 mΩ Shunt je Relaiseingang, Messbereich 05 A
	Spannungsmessung	am Relaiseingang (U_IN), Messbereich 030 VDC
Steuerung	Relais	I ² C-gesteuert via PCF8574
	Powermeter	I ² C-gesteuert, 4 x LTC2945
Massebezug		GND_PC

I²C-Bus

Element	Bedingung	Spezifikation
Modi		Fast Mode (Fm): 0,4 Mbit/s
Busteilnehmer		Max. 128 Geräte im Slave-Modus adressierbar; ADQ-SCU ist immer Slave!
Bussignale	via HDMI (STB18)	Taktleitung "Serial Clock" (I2C_SCL) Datenleitung "Serial Data" (I2C_SDA)
Adressformat		7-Bit Slave-Adresse + Schreib-/Lese-Bit als LSB
Datenformat		Pro Schreib- oder Lesezyklus können bis zu 4 Daten-Bytes übertragen werden
Isolierung	via Optokoppler (Typ: ISO1541)	für Busteilnehmer auf Baseboard (inkl. Temperatursensor und EEPROM), Powerboard und Relaisboard

Zähler

Element	Bedingung	Spezifikation
Zählertyp		32 bit Abwärtszähler
Preset		32 bit Startwert ladbar
Modus		Einmaliges Zählen bis Null (retriggerbar) oder kontinuierlich mit automatischem Nachladen des Startwertes
Schwellwert	Schwellwert < Preset	Programmierbarer Schwellwert, der bei Übereinstimmung mit aktuellem Zählerstand Interrupt auslösen kann
Strobe	Strobe < Preset	Impulsdauer in Schritten von 15,15 ns einstellbar
Interrupt		Bei Nulldurchgang oder Erreichen des Schwellwertes
Eingänge	via HDMI (STB18)	Enable-Input (CNT_EN) Externer Trigger-Input (CNT_TRIG) Externer Takt-Input (CNT_EXT_CLK)
Ausgang	via HDMI (STB18)	Strobe-Ausgang (CNT_OUT)

Inkremental-Encoder-Port (in Vorbereitung, alle Angaben ohne Gewähr)

Element	Bedingung	Spezifikation
Zählertyp		16 bit Auf-/Abwärts-Zähler + Bewegungsrichtung
Quadratursignal		A/B-Kanal mit 90° Phasenverschiebung
Codierung		Gray-Code
Auflösung		4-fach pro Signalperiode ("jede Flanke zählt")
Fehlerkorrektur		Unterdrückung ungültiger Zustände auf Hardware-Ebene
Impulsfrequenz Sensor		max. 33 MHz
Reset-Input		asynchroner Reset, setzt Zähler auf 0000 Hex
Interrupt		Interrupt bei Überschreitung des Zählbereichs
Eingänge	via STB10	Sensor-Eingang "Kanal A" (INC_A) Sensor-Eingang "Kanal B" (INC_B) Externer Reset-Eingang (INC_EXT_RST)

Frequenzmessung

Element	Bedingung	Spezifikation
Messbereich	Frequenz (Periode)	$f_{IN} = 0.0153 \text{Hz} \ (T_{IN} = 65 \text{s}) \text{bis} f_{IN} = 660 \text{kHz} \ (T_{IN} = 1.5 \mu\text{s}).$
	Impulsdauer (High)	T _{ON} in Schritten von 15,15 ns
Auflösung	Periode & Impuls	15,15 ns
Genauigkeit	systembedingt	±15,15 ns
Eingang	via HDMI (STB18)	Frequenzmesseingang (FRQ_IN)

PWM-Ausgabe

Element	Bedingung	Spezifikation
Rechtecksignal- Ausgabe	Frequenz (Periode)	$f_{OUT}=0.0153Hz$ ($T_{OUT}=65s)$ bis $f_{OUT}=660kHz$ ($T_{OUT}=1.5\mu s).$
	Impulsdauer (High)	T _{ON} in Schritten von 15,15 ns; T _{ONmax} = T _{OUT} -15,15 ns
Tastgrad	Periodendauer/ Impulsdauer	Min. 1%-Schritte oder feiner (langsame Frequenzen können feiner aufgelöst werden als hohe Frequenzen).
Auflösung	Periode & Impuls	15,15 ns
Eingang	via HDMI (STB18)	Enable-Input (PWM_EN)
Ausgang	via HDMI (STB18)	PWM-Ausgang (PWM_OUT), per Software invertierbar

6. Anhang

6.1 Zubehör

6.1.1 Kabel

- ADQ-CR-VHDCI-68M/68M-1,2m (Art.-Nr. 150597)
 Rundkabel doppelt geschirmt von 68pol. VHDCI-Stecker auf 68pol. VHDCI-Stecker, Leitungen paarweise verdrillt, Länge: ca. 1,2 m
- ADQ-CR-VHDCI-68M/68M-1,8m (Art.-Nr. 146813)
 Rundkabel doppelt geschirmt von 68pol. VHDCI-Stecker auf 68pol. VHDCI-Stecker, Leitungen paarweise verdrillt, Länge: ca. 1,8 m
- ADQ-CR-HDMI-MM-1m (Art.-Nr. 127015)
 HDMI-Kabel zur Verbindung der Digital-I/Os und Triggersignale mit dem Spezial-Anschlussblock, Länge: 1 m

6.2 Hersteller und Support

ALLNET® ist ein eingetragenes Warenzeichen der ALLNET® GmbH Computersysteme. Bei Fragen, Problemen und für Produktinformationen sämtlicher Art wenden Sie sich bitte direkt an den Hersteller:

ALLNET® GmbH Computersysteme

Division ALLDAQ

Maistrasse 2

D-82110 Germering

E-Mail: support@alldaq.com Phone: +49 (0)89 894 222 - 474 Fax: +49 (0)89 894 222 - 33 Internet: www.alldaq.com

Anhang 79

6.3 Wichtige Hinweise

6.3.1 Verpackungsverordnung

"Grundsätzlich sind Hersteller wie auch Vertreiber verpflichtet dafür zu sorgen, dass Verkaufsverpackungen prinzipiell nach Gebrauch wieder vom Endverbraucher zurückgenommen und einer erneuten Verwendung oder einer stofflichen Verwertung zugeführt werden." (gemäß § 4 Satz 1 der VerpackVO). Sollten Sie als Kunde Probleme bei der Entsorgung der Verpackungsund Versandmaterialien haben, schreiben Sie bitte eine E-Mail an info@allnet.de

6.3.2 Recycling-Hinweis und RoHS-Konformität

Bitte beachten Sie, dass Teile der Produkte der ALLNET® GmbH in Recyclestellen abgegeben werden sollen bzw. nicht über den Hausmüll entsorgt werden dürfen (Leiterplatten, Netzteil, etc.).

ALLNET® Produkte sind RoHs konform gefertigt (RoHS = engl. Restriction of the use of certain hazardous substances; dt. "Beschränkung der Verwendung bestimmter gefährlicher Stoffe".

6.3.3 Garantie

Innerhalb der Garantiezeit beseitigen wir Fabrikations- und Materialfehler kostenlos. Die für Ihr Land gültigen Garantiebestimmungen finden Sie auf der Homepage Ihres Distributors. Bei Fragen oder Problemen zur Anwendung erreichen Sie uns während unserer normalen Öffnungszeiten unter folgender Telefonnummer +49 (0)89 894 222 – 474 oder per E-Mail an: support@alldag.com.

80 Anhang

Anhang 81

ALLNET® GmbH Computersysteme

Division ALLDAQ Maistrasse 2 D-82110 Germering

E-Mail: support@alldaq.com
Phone: +49 (0)89 894 222 - 474
Fax: +49 (0)89 894 222 - 33
Internet: www.alldaq.com

